
Org Mode - Organize Your Life In Plain Text!

Bernt Hansen (IRC:Thumper_ on freenode)∗

October 15, 2011

Contents

1 Getting Started 5
1.1 Org-Mode Setup . 5
1.2 Organizing Your Life Into Org Files 6
1.3 Agenda Setup . 7
1.4 Org File Structure . 8
1.5 Key bindings . 10

2 Tasks and States 12
2.1 TODO keywords . 13
2.2 Fast Todo Selection . 16
2.3 TODO state triggers . 16

3 Adding New Tasks Quickly with Org Capture 17
3.1 Capture Templates . 18
3.2 Separate file for Capture Tasks 19
3.3 Capture Tasks is all about being FAST 20

4 Refiling Tasks 20
4.1 Refile Setup . 20
4.2 Refiling Tasks . 22
4.3 Refiling Notes . 22
4.4 Refiling Phone Calls . 22

∗bernt@norang.ca

1

5 Custom agenda views 22
5.1 Setup . 23
5.2 What do I work on next? . 27
5.3 Reading email, newsgroups, and conversations on IRC 28
5.4 Filtering . 29

6 Time Clocking 30
6.1 Clock Setup . 33
6.2 Clocking in . 37
6.3 Clock Everything - Create New Tasks 39
6.4 Finding tasks to clock in . 40
6.5 Editing clock entries . 40
6.6 Automatically clocking tasks 41

7 Time reporting and tracking 42
7.1 Billing clients based on clocked time 42
7.2 Task Estimates and column view 44

8 Tags 46
8.1 Tags . 47
8.2 Filetags . 48
8.3 Trigger Tags . 49

9 Handling Notes 49

10 Handling Phone Calls 50

11 GTD stuff 52
11.1 Weekly Review Process . 52
11.2 Project definition and finding stuck projects 53

12 Archiving 56
12.1 Archiving Subtrees . 56
12.2 Archive Setup . 56
12.3 Archive Tag - Hiding Information 57
12.4 When to Archive . 57

13 Publishing and Exporting 58
13.1 Org-babel Setup . 58
13.2 Playing with ditaa . 59
13.3 Playing with graphviz . 61

2

13.4 Playing with PlantUML . 63
13.5 Publishing Projects . 68
13.6 Miscellaneous Export Settings 74

14 Reminders 75
14.1 Reminder Setup . 75

15 Productivity Tools 76
15.1 Yasnippet . 76
15.2 Abbrev-mode and Skeletons 78
15.3 Limit your view to what you are working on 79
15.4 Tuning the Agenda Views . 80
15.5 Checklist handling . 86
15.6 Backups . 87
15.7 Handling blocked tasks . 87
15.8 Org Task structure and presentation 88
15.9 Attachments . 91
15.10Deadlines and Agenda Visibility 92
15.11Exporting Tables to CSV . 93
15.12Visiting links . 94
15.13Logging stuff . 94
15.14Limiting time spent on tasks 95
15.15Habit Tracking . 96
15.16Habits only log DONE state changes 97
15.17Auto revert mode . 98
15.18Handling Encryption . 98
15.19Speed Commands . 99
15.20Org Protocol . 100
15.21Require a final newline when saving files 101
15.22Insert inactive timestamps and exclude from export 101
15.23Return follows links . 102
15.24Highlight clock when running overtime 102
15.25Meeting Notes . 103
15.26Highlights persist after changes 104
15.27Getting up to date org-mode info documentation 105
15.28Prefer future dates or not? . 105
15.29Automatically change list bullets 105
15.30Remove indentation on agenda tags view 106
15.31Fontify source blocks natively 106
15.32Agenda persistent filters . 106

3

15.33Add tags for flagged entries 106
15.34Prevent horizontal window splitting 107
15.35Mail links open compose-mail 107
15.36Composing mail from org mode subtrees 107
15.37Use smex for M-x ido-completion 107
15.38Use Emacs bookmarks for fast navigation 108
15.39Using org-mime to email . 108
15.40Remove multiple state change log details from the agenda . . 108
15.41Drop old style references in tables 108
15.42Use system settings for file-application selection 109
15.43Use the current window for the agenda 109
15.44Delete IDs when cloning . 109
15.45Propagate STARTED to parent tasks 109

16 Things I Don’t Use 110
16.1 Task Priorities . 110
16.2 Archive Sibling . 110
16.3 Cycling plain lists . 110
16.4 Strike-through emphasis . 110
16.5 Subscripts and Superscripts 111

17 Using Git for Automatic History, Backups, and Synchroniza-
tion 111
17.1 Automatic Hourly Commits 111
17.2 Git - Edit files with confidence 113
17.3 Git Repository synchronization 113

18 Change History - What’s new 117

Org-mode is a fabulous organizational tool built by Carsten Dominik
that operates on plain text files. Org-mode is part of Emacs.

This document assumes you’ve had some exposure to org-mode already
so concepts like the agenda, capture mode, etc. won’t be completely foreign
to you. More information about org-mode can be found in the Org-Mode
Manual and on the Worg Site.

I have been using org-mode as my personal information manager for years
now. I started small with just the default TODO and DONE keywords. I added
small changes to my workflow and over time it evolved into what is described
by this document.

4

http://orgmode.org/index.html#sec-4.1
http://orgmode.org/index.html#sec-4.1
http://orgmode.org/worg/

I still change my workflow and try new things regularly. This document
describes mature workflows in my current org-mode setup. I tend to docu-
ment changes to my workflow 30 days after implementing them (assuming
they are still around at that point) so that the new workflow has a chance
to mature.

Some of the customized Emacs settings described in this document are
set at their default values. This explicitly shows the setting for important
org-mode variables used in my workflow and to keep my workflow behaviour
stable in the event that the default value changes in the future.

1 Getting Started

I use org-mode in most of my emacs buffers.

1.1 Org-Mode Setup

The following setup in my .emacs enables org-mode for most buffers.
org-mode is the default mode for .org, .org_archive, and .txt files.

; ; ;
; ; ; Org Mode
; ; ;
(add−to− l ist ’ load−path (expand−file−name "~/ g i t /org−mode/ l i s p "))
(add−to− l ist ’ auto−mode−alist ’ (" \\ . \\ (org \\ | org_archive \\ | txt \\) $" . org−mode))
(require ’ o r g− i n s t a l l)
; ;
; ; Standard key b ind ing s
(global−set−key "\C−cl" ’ org−store− l ink)
(global−set−key "\C−ca" ’ org−agenda)
(global−set−key "\C−cb" ’ org− i switchb)

orgstruct++-mode is enabled in Gnus message buffers to aid in creating
structured email messages.

(add−hook ’message−mode−hook ’ o r g s t r u c t++−mode ’append)
(add−hook ’message−mode−hook ’ turn−on−auto− f i l l ’append)
(add−hook ’message−mode−hook ’ bbdb−def ine−al l−al iases ’append)
(add−hook ’message−mode−hook ’ orgtbl−mode ’append)
(add−hook ’message−mode−hook ’ turn−on− f lyspe l l ’append)
(add−hook ’message−mode−hook ’ (lambda () (s e tq f i l l−co lumn 72)) ’append)
(add−hook ’message−mode−hook ’ (lambda () (local−set−key (kbd "C−c␣M−o") ’ org−mime−htmlize)) ’append)

5

flyspell-mode is enabled for almost everything to help prevent creating
documents with spelling errors.

; ; f l y s p e l l mode f o r s p e l l check ing everywhere
(add−hook ’ org−mode−hook ’ turn−on− f lyspe l l ’append)

; ; D i sab l e C−c [and C−c] in org−mode
(add−hook ’ org−mode−hook

(lambda ()
; ; Undefine C−c [and C−c] s ince t h i s breaks my
; ; org−agenda f i l e s when d i r e c t o r i e s are inc l ude I t
; ; expands the f i l e s in the d i r e c t o r i e s i n d i v i d u a l l y
(org−defkey org−mode−map "\C−c [" ’ undef ined)
(org−defkey org−mode−map "\C−c] " ’ undef ined)) ’append)

(add−hook ’ org−mode−hook
(lambda ()

(local−set−key (kbd "C−c␣M−o") ’bh/mail−subtree)) ’append)

(defun bh/mail−subtree ()
(i n t e r a c t i v e)
(org−mark−subtree)
(org−mime−subtree))

; ; Enable abbrev−mode
(add−hook ’ org−mode−hook (lambda () (abbrev−mode 1)))

1.2 Organizing Your Life Into Org Files

Tasks are separated into logical groupings or projects. Use separate org files
for large task groupings and subdirectories for collections of files for multiple
projects that belong together.

Here are sample files that I use.
The following org files collect non-work related tasks:

6

Filename Description
todo.org Personal tasks and things to keep track of
gsoc2009.org Google Summer of Code stuff for 2009
farm.org Farm related tasks
mark.org Tasks related to my son Mark
org.org Org-mode related tasks
git.org Git related tasks
bzflag.org BZFlag related tasks

The following org-file collects org capture notes and tasks:

Filename Description
refile.org Capture task bucket

The following work-related org-files keep my business notes (using ficti-
tious client names)

Filename Description
norang.org Norang tasks and notes
XYZ.org XYZ Corp tasks and notes
ABC.org ABC Ltd tasks
ABC-DEF.org ABC Ltd tasks for their client DEF Corp
ABC-KKK.org ABC Ltd tasks for their client KKK Inc
YYY.org YYY Inc tasks

Org-mode is great for dealing with multiple clients and client projects.
An org file becomes the collection of projects, notes, etc. for a single client
or client-project.

Client ABC Ltd. has multiple customer systems that I work on. Sep-
arating the tasks for each client-customer into separate org files helps keep
things logically grouped and since clients come and go this allows entire org
files to be added or dropped from my agenda to keep only what is important
visible in agenda views.

Other org files are used for publishing only and do not contribute to the
agenda. See Publishing for more details.

1.3 Agenda Setup

Here is my current org-agenda-files setup.

(s e tq org−agenda− f i l es (quote ("~/ g i t / org "
"~/ g i t / org / c l i e n t 1 "

7

"~/ g i t / org / b z f l a g "
"~/ g i t / c l i e n t 2 ")))

org-mode manages the org-agenda-files variable automatically using
C-c [and C-c] to add and remove files respectively. However, this replaces
my directory list with a list of explicit filenames instead and is not what I
want. If this occurs then adding a new org file to any of the above direc-
tories will not contribute to my agenda and I will probably miss something
important.

I have disabled the C-c [and C-c] keys in org-mode-hook to prevent
messing up my list of directories in the org-agenda-files variable. I just
add and remove directories manually in my .emacs file. Changing the list
of directories in org-agenda-files happens very rarely since new files in
existing directories are automatically picked up.

In the example above I have ~/git/client2 in a separate git repository
from ˜/git/org. This gives me the flexibility of leaving confidential informa-
tion at the client site and having all of my personal information available
everywhere I use org-mode. I synchronize my personal repositories on multi-
ple machines and skip the confidential info on the non-client laptop I travel
with. org-agenda-files on this laptop does not include the ~/git/client2
directory.

1.4 Org File Structure

Most of my org files are set up with level 1 headings as main categories only.
Tasks and projects normally start as level 2.

Here are some examples of my level 1 headings in
todo.org:

• Special Dates

Includes level 2 headings for

– Birthdays

– Anniversaries

– Holidays

• Finances

• Health and Recreation

• House Maintenance

8

• Lawn and Garden Maintenance

• Notes

• Tasks

• Vehicle Maintenance

• Passwords

norang.org:

• System Maintenance

• Payroll

• Accounting

• Finances

• Hardware Maintenance

• Tasks

• Research and Development

• Notes

• Purchase Order Tracking

• Passwords

Each of these level 1 tasks normally has a property drawer specifying
the category for any tasks in that tree. Level 1 headings are set up like this:

* Health and Recreation
:PROPERTIES:
:CATEGORY: Health
:END:
...

* House Maintenance
:PROPERTIES:
:CATEGORY: House
:END:

9

1.5 Key bindings

I live in the agenda. To make getting to the agenda faster I mapped F12 to
the sequence C-c a since I’m using it hundreds of times a day.

I have the following custom key bindings set up for my emacs (sorted by
frequency).

Key For Used
F12 Agenda (1 key less than C-c a) Very Often
C-c b Switch to org file Very Often
F11 Goto currently clocked item Very Often
C-M-r Capture a task Very Often
C-F11 Clock in a task (show menu with prefix) Often
f9 g Gnus - I check mail regularly Often
f5 Show todo items for this subtree Often
S-f5 Widen Often
f9 b Quick access to bbdb data Often
f9 c Calendar access Often
C-S-f12 Save buffers and publish current project Often
C-c l Store a link for retrieval with C-c C-l Often
f8 Go to next org file in org-agenda-files Sometimes
f9 r Boxquote selected region Sometimes
f9 t Insert inactive timestamp Sometimes
f9 v Toggle visible mode (for showing/editing links) Sometimes
C-f9 Previous buffer Sometimes
C-f10 Next buffer Sometimes
C-x n r Narrow to region Sometimes
f9 f Boxquote insert a file Sometimes
f9 i Info manual Sometimes
f9 I Punch Clock In Sometimes
f9 O Punch Clock Out Sometimes
f9 o Switch to org scratch buffer Sometimes
f9 s Switch to scratch buffer Sometimes
C-c r Capture a task (from my mobile phone) Rare
f9 h Hide other tasks Rare
f7 Toggle line truncation/wrap Rare
f9 u Untabify region Rare
C-c a Enter Agenda (minimal emacs testing) Rare

Here is the keybinding setup in lisp:

10

; ; Custom Key Bindings
(global−set−key (kbd "<f12>") ’ org−agenda)
(global−set−key (kbd "<f5>") ’bh/org−todo)
(global−set−key (kbd "<S−f5>") ’bh/widen)
(global−set−key (kbd "<f7>") ’bh/ se t− t runcate− l i ne s)
(global−set−key (kbd "<f8>") ’ org−cyc le−agenda− f i l es)
(global−set−key (kbd "<f9>␣b") ’ bbdb)
(global−set−key (kbd "<f9>␣c") ’ ca l endar)
(global−set−key (kbd "<f9>␣ f ") ’ boxquote− i n s e r t− f i l e)
(global−set−key (kbd "<f9>␣g") ’ gnus)
(global−set−key (kbd "<f9>␣h") ’bh/hide−other)
(global−set−key (kbd "<f9>␣ i ") ’ i n f o)

(global−set−key (kbd "<f9>␣ I ") ’bh/punch−in)
(global−set−key (kbd "<f9>␣O") ’bh/punch−out)

(global−set−key (kbd "<f9>␣o") ’bh/make−org−scratch)

(global−set−key (kbd "<f9>␣ r ") ’ boxquote−region)
(global−set−key (kbd "<f9>␣ s ") ’bh/ switch−to−scratch)

(global−set−key (kbd "<f9>␣ t ") ’ bh/ insert− inact ive−t imestamp)
(global−set−key (kbd "<f9>␣u") ’bh/ untab i fy)

(global−set−key (kbd "<f9>␣v") ’ vis ible−mode)
(global−set−key (kbd "<f9>␣SPC") ’bh/ clock− in− last−task)
(global−set−key (kbd "C−<f9>") ’ prev ious−buf f e r)
(global−set−key (kbd "C−x␣n␣ r ") ’ narrow−to−region)
(global−set−key (kbd "C−<f10>") ’ next−buf fer)
(global−set−key (kbd "<f11>") ’ org−clock−goto)
(global−set−key (kbd "C−<f11>") ’ org−clock− in)
(global−set−key (kbd "C−s−<f12>") ’bh/ save−then−publish)
(global−set−key (kbd "C−M−r") ’ org−capture)
(global−set−key (kbd "C−c␣ r ") ’ org−capture)

(defun bh/hide−other ()
(i n t e r a c t i v e)
(save−excurs ion

(org−back−to−heading)
(o rg− sh i f t tab)

11

(org−revea l)
(org−cycle)))

(defun bh/ se t− t runcate− l i ne s ()
"Toggle ␣ value ␣ o f ␣ t runca t e− l i n e s ␣and␣ r e f r e s h ␣window␣ d i sp l ay . "
(i n t e r a c t i v e)
(s e tq t runca t e− l i n e s (not t runca t e− l i n e s))
; ; now r e f r e s h window d i s p l a y (an idiom from simple . e l) :
(save−excurs ion

(set−window−start (selected−window)
(window−start (selected−window)))))

(defun bh/make−org−scratch ()
(i n t e r a c t i v e)
(f i n d− f i l e "/tmp/ pub l i sh / s c ra t ch . org ")
(gnus−make−directory "/tmp/ pub l i sh "))

(defun bh/ switch−to−scratch ()
(i n t e r a c t i v e)
(switch−to−buffer "∗ s c ra t ch ∗"))

(defun bh/ untab i fy ()
(i n t e r a c t i v e)
(untab i fy (point−min) (point−max)))

The main reason I have special key bindings (like F11, and F12) is so
that the keys work in any mode. If I’m in the Gnus summary buffer then
C-u C-c C-x C-i doesn’t work, but the C-F11 key combination does and
this saves me time since I don’t have to visit an org-mode buffer first just to
clock in a recent task.

2 Tasks and States

I use one set of TODO keywords for all of my org files. Org-mode lets you
define TODO keywords per file but I find it’s easier to have a standard set
of TODO keywords globally so I can use the same setup in any org file I’m
working with.

The only exception to this is this document :) since I don’t want
org-mode hiding the TODO keyword when it appears in headlines. I’ve set
up a dummy #+SEQ_TODO: FIXME FIXED entry at the top of this file just to

12

leave my TODO keyword untouched in this document.

2.1 TODO keywords

I use a light colour theme in emacs. I find this easier to read on bright sunny
days.

Here are my TODO state keywords and colour settings:

(s e tq org−todo−keywords
(quote ((sequence "TODO(t) " "NEXT(n) " "STARTED(s) " " | " "DONE(d ! / !) ")

(sequence "WAITING(w@/ !) " "SOMEDAY(S !) " " | " "CANCELLED(c@/ !) " "PHONE")
(sequence "OPEN(O!) " " | " "CLOSED(C!) "))))

(s e tq org−todo−keyword−faces
(quote (("TODO" : foreground " red " : weight bold)

("NEXT" : foreground " blue " : weight bold)
("STARTED" : foreground " blue " : weight bold)
("DONE" : foreground " f o r e s t ␣ green " : weight bold)
("WAITING" : foreground "orange " : weight bold)
("SOMEDAY" : foreground "magenta" : weight bold)
("CANCELLED" : foreground " f o r e s t ␣ green " : weight bold)
("OPEN" : foreground " blue " : weight bold)
("CLOSED" : foreground " f o r e s t ␣ green " : weight bold)
("PHONE" : foreground " f o r e s t ␣ green " : weight bold))))

2.1.1 Normal Task States

Normal tasks go through the sequence TODO -> DONE.
The following diagram shows the possible state transitions for a task.

13

2.1.2 Project Task States

I use a lazy project definition. I don’t like to bother with manually stating
‘this is a project’ and ‘that is not a project’. For me a project definition is
really simple. If a task has subtasks with a todo keyword then it’s a project.
That’s it.

Projects can be defined at any level - just create a task with a todo state
keyword that has at least one subtask also with a todo state keyword and
you have a project. Projects use the same todo keywords as regular tasks
with one exception - one subtask of a project needs to be marked NEXT or
STARTED so the project is not on the stuck projects list.

14

2.1.3 Purchase Order Task States

Paying projects have a Purchase Order associated with it which is used for
billing the client. The following states track purchase orders.

2.1.4 Phone Calls

Telephone calls are special. They are created in a done state by a capture
task. The time of the call is recorded for as long as the capture task is active.
If I need to look up other details and want to close the capture task early I
can just C-c C-c to close the capture task (stopping the clock) and then f9
SPC to resume the clock in the phone call while I do other things.

15

2.2 Fast Todo Selection

Fast todo selection allows changing from any task todo state to any other
state directly by selecting the appropriate key from the fast todo selection
key menu. This is a great feature!

(s e tq org−use− fast−todo−se lect ion t)

Changing a task state is done with

C-c C-t KEY

where KEY is the appropriate fast todo state selection key as defined in
org-todo-keywords.

The setting

(s e tq org−treat−S−cursor−todo−selection−as−state−change n i l)

allows changing todo states with S-left and S-right skipping all of the normal
processing when entering or leaving a todo state. This cycles through the
todo states but skips setting timestamps and entering notes which is very
convenient when all you want to do is fix up the status of an entry.

2.3 TODO state triggers

I have a few triggers that automatically assign tags to tasks based on state
changes. If a task moves to CANCELLED state then it gets a CANCELLED tag.
Moving a CANCELLED task back to TODO removes the CANCELLED tag. These
are used for filtering tasks in agenda views which I’ll talk about later.

The triggers break down to the following rules:

• Moving a task to CANCELLED adds a CANCELLED tag

16

• Moving a task to WAITING adds a WAITING tag

• Moving a task to SOMEDAY adds a WAITING tag

• Moving a task to a done state removes a WAITING tag

• Moving a task to TODO removes WAITING and CANCELLED tags

• Moving a task to NEXT removes a WAITING tag

• Moving a task to STARTED removes a WAITING tag

• Moving a task to DONE removes WAITING and CANCELLED tags

The tags are used to filter tasks in the agenda views conveniently.

(s e tq org−todo−state−tags−tr iggers
(quote (("CANCELLED" ("CANCELLED" . t))

("WAITING" ("WAITING" . t))
("SOMEDAY" ("WAITING" . t))
(done ("WAITING"))
("TODO" ("WAITING") ("CANCELLED"))
("NEXT" ("WAITING"))
("STARTED" ("WAITING"))
("DONE" ("WAITING") ("CANCELLED")))))

3 Adding New Tasks Quickly with Org Capture

Org Capture mode replaces remember mode for capturing tasks and notes.
To add new tasks efficiently I use a minimal number of capture templates.

I used to have lots of capture templates, one for each org-file. I’d start org-
capture with C-M-r and then pick a template that filed the task under *
Tasks in the appropriate file. This binding of C-M-r overrides the default
emacs reverse regexp search but I rarely use that and can invoke it from the
M-x command line if I really need it. I like C-M-r better than C-c r since it
feels like a single keystroke instead of two separate keys and I’ve been using
this so long that my fingers just do the right thing without really thinking
about it.

I found I still needed to refile these capture tasks again to the correct
location within the org-file so all of these different capture templates weren’t
really helping at all. Since then I’ve changed my workflow to use a minimal
number of capture templates – I create the new task quickly and refile it

17

once. This also saves me from maintaining my org-capture templates when
I add a new org file.

3.1 Capture Templates

When a new task needs to be added I categorize it into one of a few things:

• A phone call (p)

• A new task (t)

• A new note (n)

• An interruption (j)

• A new habit (h)

and pick the appropriate capture task.
Here is my setup for org-capture

(s e tq org−de fau l t−notes− f i l e "~/ g i t / org / r e f i l e . org ")

; ; I use C−M−r to s t a r t capture mode
(global−set−key (kbd "C−M−r") ’ org−capture)
; ; I use C−c r to s t a r t capture mode when us ing SSH from my Android phone
(global−set−key (kbd "C−c␣ r ") ’ org−capture)

; ; Capture t emp la t e s f o r : TODO tasks , Notes , appointments , phone c a l l s , and org−protoco l
(s e tq org−capture−templates

(quote ((" t " " todo" entry (f i l e "~/ g i t / org / r e f i l e . org ")
"∗␣TODO␣%?\n%U\n%a\n␣␣%i " : c lock− in t : clock−resume t)

("n" "note " entry (f i l e "~/ g i t / org / r e f i l e . org ")
"∗␣%?␣ :NOTE:\ n%U\n%a\n␣␣%i " : c lock− in t : clock−resume t)

(" j " " Journal " entry (f i l e+dat e t r e e "~/ g i t / org / d iary . org ")
"∗␣%?\n%U\n␣␣%i " : c lock− in t : clock−resume t)

("w" " org−protocol " entry (f i l e "~/ g i t / org / r e f i l e . org ")
"∗␣TODO␣Review␣%c\n%U\n␣␣%i " : immediate− f in ish t)

("p" "Phone␣ c a l l " entry (f i l e "~/ g i t / org / r e f i l e . org ")
"∗␣PHONE␣%?␣ :PHONE:\ n%U" : c lock− in t : clock−resume t)

("h" "Habit " entry (f i l e "~/ g i t / org / r e f i l e . org ")
"∗␣NEXT␣%?\n%U\n%a\nSCHEDULED: ␣%t ␣.+1d/3d\n :PROPERTIES: \ n :STYLE: ␣ habi t \n :REPEAT_TO_STATE: ␣NEXT\n :END:\ n␣␣%i "))))

18

The %i in the templates inserts any text in the kill ring as part of the
capture task. This is intentionally indented from the rest of the capture task
details so that I can include text that starts with ‘* ‘ in column 1 without
generating a new headline.

Capture mode now handles automatically clocking in and out of a capture
task. This all works out of the box now without special hooks. When I start
a capture mode task the task is clocked in as specified by :clock-in t and
when the task is filed with C-c C-c the clock resumes on the original clocking
task.

The quick clocking in and out of capture mode tasks (often it takes less
than a minute to capture some new task details) can leave empty clock
drawers in my tasks which aren’t really useful. Since I remove clocking lines
with 0:00 length I end up with a clock drawer like this:

* TODO New Capture Task
:LOGBOOK:
:END:
[2010-05-08 Sat 13:53]

I have the following setup to remove these empty LOGBOOK drawers if they
occur.

; ; Remove empty LOGBOOK drawers on c l o c k out
(defun bh/remove−empty−drawer−on−clock−out ()

(i n t e r a c t i v e)
(save−excurs ion

(beginning−of− l ine 0)
(org−remove−empty−drawer−at "LOGBOOK" (po int))))

(add−hook ’ org−clock−out−hook ’bh/remove−empty−drawer−on−clock−out ’append)

3.2 Separate file for Capture Tasks

I have a single org file which is the target for my capture templates.
I store notes, tasks, phone calls, and org-protocol tasks in refile.org.

I used to use multiple files but found that didn’t really have any advantage
over a single file.

Normally this file is empty except for a single line at the top which creates
a REFILE tag for anything in the file.

The file has a single permanent line at the top like this

#+FILETAGS: REFILE

19

3.3 Capture Tasks is all about being FAST

Okay I’m in the middle of something and oh yeah - I have to remember to
do that. I don’t stop what I’m doing. I’m probably clocking a project I’m
working on and I don’t want to lose my focus on that but I can’t afford to
forget this little thing that just came up.

So what do I do? Hit C-M-r to start capture mode and select t since it’s
a new task and I get a buffer like this:

** TODO
[2010-08-05 Thu 21:06]
[[file:~/git/org-mode-doc/org-mode.org::*Capture%20Tasks%20is%20all%20about%20being%20FAST][Capture Tasks is all about being FAST]]

Enter the details of the TODO item and C-c C-c to file it away in re-
file.org and go right back to what I’m really working on secure in the knowl-
edge that that item isn’t going to get lost and I don’t have to think about
it anymore at all now.

The amount of time I spend entering the captured note is clocked. The
capture templates are set to automatically clock in and out of the capture
task. This is great for interruptions and telephone calls too.

4 Refiling Tasks

Refiling tasks is easy. After collecting a bunch of new tasks in my refile.org
file using capture mode I need to move these to the correct org file and
topic. All of my active org-files are in my org-agenda-files variable and
contribute to the agenda.

I collect capture tasks in refile.org for up to a week. These now stand
out daily on my block agenda and I usually refile them during the day. I like
to keep my refile task list empty.

4.1 Refile Setup

To refile tasks in org you need to tell it where you want to refile things.
In my setup I let any file in org-agenda-files and the current file con-

tribute to the list of valid refile targets.
I’ve recently moved to using IDO to complete targets directly. I find this

to be faster than my previous complete in steps setup. At first I didn’t like
IDO but after reviewing the documentation again and learning about C-SPC
to limit target searches I find it is much better than my previous complete-
in-steps setup. Now when I want to refile something I do C-c C-w to start

20

the refile process, then type something to get some matching targets, then
C-SPC to restrict the matches to the current list, then continue searching
with some other text to find the target I need. C-j also selects the current
completion as the final target. I like this a lot.

I now exclude DONE state tasks as valid refile targets. This helps to
keep the refile target list to a reasonable size.

Here is my refile configuration:

; Targets i n c l ude t h i s f i l e and any f i l e c on t r i b u t i n g to the agenda − up to 2 l e v e l s deep
(s e tq o r g− r e f i l e− t a r g e t s (quote ((n i l : maxlevel . 3)

(org−agenda− f i l es : maxlevel . 3))))

; Stop us ing paths f o r r e f i l e t a r g e t s − we f i l e d i r e c t l y wi th IDO
(s e tq org−re f i l e−use−out l ine−path n i l)

; Targets complete d i r e c t l y wi th IDO
(s e tq org−outline−path−complete− in−steps n i l)

; Allow r e f i l e to c r ea t e parent t a s k s wi th conf i rmat ion
(s e tq org−re f i le−al low−creat ing−parent−nodes (quote conf i rm))

; Use IDO fo r both b u f f e r and f i l e comple t ion and ido−everywhere to t
(s e tq org−completion−use− ido t)
(s e tq ido−everywhere t)
(s e tq ido−max−directory−size 100000)
(ido−mode (quote both))

; ; ; ; R e f i l e s e t t i n g s
; Exclude DONE s t a t e t a s k s from r e f i l e t a r g e t s
(defun bh/ v e r i f y− r e f i l e− t a r g e t ()

"Exclude␣ todo␣keywords␣with␣a␣done␣ s t a t e ␣ from␣ r e f i l e ␣ t a r g e t s "
(not (member (nth 2 (org−heading−components)) org−done−keywords)))

(s e tq o rg− r e f i l e− ta rge t−ve r i f y− f unc t i on ’bh/ v e r i f y− r e f i l e− t a r g e t)

To refile a task to my norang.org file under System Maintenance I just
put the cursor on the task and hit C-c C-w and enter nor C-SPC sys RET
and it’s done. IDO completion makes locating targets a snap.

21

4.2 Refiling Tasks

Tasks to refile are in their own section of the block agenda. To find tasks to
refile I run my agenda view with F12 SPC and scroll down to second section
of the block agenda: Tasks to Refile. This view shows all tasks (even ones
marked in a done state). Alternatively I just use F12 r on my slower Eee
PC.

Bulk refiling in the agenda works very well for multiple tasks going to the
same place. Just mark the tasks with m and then B r to refile all of them to
a new location. Occasionally I’ll also refile tasks as subtasks of the current
clocking task using C-2 C-c C-w from the refile.org file.

Refiling all of my tasks tends to take less than a minute so I normally do
this a couple of times a day.

4.3 Refiling Notes

I keep a * Notes headline in most of my org-mode files. Notes have a NOTE
tag which is created by the capture template for notes. This allows finding
notes across multiple files easily using the agenda search functions.

Notes created by capture tasks go first to refile.org and are later refiled
to the appropriate project file. Some notes that are project related get filed to
the appropriate project instead of under the catchall * NOTES task. Generally
these types of notes are specific to the project and not generally useful – so
removing them from the notes list when the project is archived makes sense.

4.4 Refiling Phone Calls

Phone calls are handled using capture mode. I time my calls using the
capture mode template settings to clock in and out the capture task while
the phone call is in progress.

Phone call tasks collect in refile.org and are later refiled to the appro-
priate location. Some phone calls are billable and we want these tracked in
the appropriate category.

5 Custom agenda views

I now have one block agenda view that has everything on it. I also keep
separate single view agenda commands for use on my slower Eee PC - since
it takes prohibitively long to generate my block agenda on that slow machine.

22

I’m striving to simplify my layout with everything at my fingertips in a single
agenda on my workstation which is where I spend the bulk of my time.

Most of my old custom agenda views were rendered obsolete when filter-
ing functionality was added to the agenda in newer versions of org-mode and
now with block agenda functionality I can combine everything into a single
view.

Custom agenda views are used for:

• Single block agenda shows the following

– overview of today

– Finding tasks to be refiled

– Finding stuck projects

– Finding NEXT tasks to work on

– Reviewing projects

– Show all TODO state tasks

– Finding tasks waiting on something

– Findings tasks to be archived

• Finding notes

• Viewing habits

If I want just today’s calendar view then F12 a is still faster than gen-
erating the block agenda - especially if I want to view a week or month’s
worth of information. In that case the extra detail on the block agenda view
is never really needed and I don’t want to spend time waiting for it to be
generated.

5.1 Setup

; ; Do not dim b l o cked t a s k s
(s e tq org−agenda−dim−blocked−tasks n i l)

; ; Custom agenda command d e f i n i t i o n s
(s e tq org−agenda−custom−commands

(quote (("N" "Notes" tags "NOTE"
((org−agenda−overriding−header "Notes")
(org−tags−match− l i st−sublevels t)))

23

("h" "Habits " tags−todo "STYLE=\"habi t \""
((org−agenda−overriding−header "Habits ")
(org−agenda−sorting−strategy
’ (todo−state−down ef fort−up category−keep))))

("␣" "Agenda"
((agenda "" n i l)
(tags "REFILE"

((org−agenda−overriding−header "Notes␣and␣Tasks␣ to ␣ R e f i l e ")
(org−agenda−overriding−header "Tasks␣ to ␣ R e f i l e ")))

(tags−todo "−CANCELLED/ ! "
((org−agenda−overriding−header "Stuck␣ Pro j e c t s ")
(org−tags−match− l i st−sublevels ’ indented)
(org−agenda−skip−function ’bh/ skip−non−stuck−projects)))

(tags−todo "−WAITING−CANCELLED/ !NEXT|STARTED"
((org−agenda−overriding−header "Next␣Tasks")
(org−agenda−skip−function ’bh/ skip−projects−and−habits)
(org−agenda−todo− ignore−scheduled t)
(org−agenda−todo− ignore−deadlines t)
(org−tags−match− l i st−sublevels t)
(org−agenda−sorting−strategy
’ (todo−state−down ef fort−up category−keep))))

(tags−todo "−REFILE−CANCELLED/!−NEXT−STARTED−WAITING"
((org−agenda−overriding−header "Tasks")
(org−agenda−skip−function ’bh/ skip−projects−and−habits)
(org−tags−match− l i st−sublevels ’ indented)
(org−agenda−todo− ignore−scheduled t)
(org−agenda−todo− ignore−deadlines t)
(org−agenda−sorting−strategy
’ (category−keep))))

(tags−todo "−CANCELLED/ ! "
((org−agenda−overriding−header " Pro j e c t s ")
(org−agenda−skip−function ’bh/ skip−non−projects)
(org−tags−match− l i st−sublevels ’ indented)
(org−agenda−sorting−strategy
’ (category−keep))))

(todo "WAITING|SOMEDAY"
((org−agenda−overriding−header "Waiting␣and␣Postponed␣ ta sk s ")
(org−agenda−skip−function ’bh/ skip−projects−and−habits)))

(tags "−REFILE/"
((org−agenda−overriding−header "Tasks␣ to ␣Archive ")

24

(org−agenda−skip−function ’bh/ skip−non−archivable−tasks))))
n i l)

(" r " "Tasks␣ to ␣ R e f i l e " tags "REFILE"
((org−agenda−overriding−header "Notes␣and␣Tasks␣ to ␣ R e f i l e ")
(org−agenda−overriding−header "Tasks␣ to ␣ R e f i l e ")))

("#" "Stuck␣ Pro j e c t s " tags−todo "−CANCELLED/ ! "
((org−agenda−overriding−header "Stuck␣ Pro j e c t s ")
(org−tags−match− l i st−sublevels ’ indented)
(org−agenda−skip−function ’bh/ skip−non−stuck−projects)))

("n" "Next␣Tasks" tags−todo "−WAITING−CANCELLED/ !NEXT|STARTED"
((org−agenda−overriding−header "Next␣Tasks")
(org−agenda−skip−function ’bh/ skip−projects−and−habits)
(org−agenda−todo− ignore−scheduled t)
(org−agenda−todo− ignore−deadlines t)
(org−tags−match− l i st−sublevels t)
(org−agenda−sorting−strategy
’ (todo−state−down ef fort−up category−keep))))

("R" "Tasks" tags−todo "−REFILE−CANCELLED/!−NEXT−STARTED−WAITING"
((org−agenda−overriding−header "Tasks")
(org−agenda−skip−function ’bh/ skip−projects−and−habits)
(org−tags−match− l i st−sublevels ’ indented)
(org−agenda−sorting−strategy
’ (category−keep))))

("p" " Pro j e c t s " tags−todo "−CANCELLED/ ! "
((org−agenda−overriding−header " Pro j e c t s ")
(org−agenda−skip−function ’bh/ skip−non−projects)
(org−tags−match− l i st−sublevels ’ indented)
(org−agenda−sorting−strategy
’ (category−keep))))

("w" "Waiting␣Tasks" todo "WAITING|SOMEDAY"
((org−agenda−overriding−header "Waiting␣and␣Postponed␣ ta sk s "))
(org−agenda−skip−function ’bh/ skip−projects−and−habits))

("A" "Tasks␣ to ␣Archive " tags "−REFILE/"
((org−agenda−overriding−header "Tasks␣ to ␣Archive ")
(org−agenda−skip−function ’bh/ skip−non−archivable−tasks))))))

My block agenda view looks like this:

25

I generally work top-down on the agenda. Things with deadlines and
scheduled dates (planned to work on today or earlier) show up in the agenda
at the top. When searching for tasks in the agenda I disable display of child
tasks with the following setting:

(s e tq org−tags−match− l i st−sublevels n i l)

This keeps the list of tasks I’m looking at to a reasonable size. I can
always display child tasks for any specific task I want simply by visiting it
in the org buffer.

My day goes generally like this:

26

• Punch in (this starts the clock on the default task)

• Look at the agenda and make a mental note of anything important to
deal with today

• Read email and news

– create notes, and tasks for things that need responses with org-
capture

• Check refile tasks and respond to emails

• Look at my agenda and work on important tasks for today

– Clock it in

– Work on it until it is DONE or it gets interrupted

• work on tasks

• Make journal entries (C-M-r j) for interruptions

• Punch out for lunch and punch back in after lunch

• work on more tasks

• Refile tasks to empty the list

– Tag tasks to be refiled with m collecting all tasks for the same
target

– Bulk refile the tasks to the target location with B r

– Repeat (or refile individually with C-c C-w) until all refile tasks
are gone

• Mark habits done today as DONE

• Punch out at the end of the work day

5.2 What do I work on next?

Start with deadlines and tasks scheduled today or earlier from the daily
agenda view. Then move on to tasks in the Next Tasks list in the block
agenda view.

When I look for a new task to work on I generally hit F12 SPC to get the
block agenda and follow this order:

27

• Pick something off today’s agenda

– deadline for today (do this first - it’s not late yet)
– deadline in the past (it’s already late)
– a scheduled task for today (or in the past)
– deadline that is coming up soon

• pick a NEXT task

• If you run out of items to work on look for a NEXT task in the current
context pick a task from the Tasks list of the current project.

5.2.1 Why keep it all on the NEXT list?

I’ve moved to a more GTD way of doing things. Now I just use a NEXT list.
Only projects get tasks with NEXT keywords since stuck projects initiate the
need for marking or creating NEXT tasks. A NEXT task is something that is
available to work on now, it is the next logical step in some project.

I used to have a special keyword ONGOING for things that I do a lot and
want to clock but never really start/end. I had a special agenda view for
ONGOING tasks that I would pull up to easily find the thing I want to clock.

Since then I’ve moved away from using the ONGOING todo keyword. Hav-
ing an agenda view that shows NEXT tasks makes it easy to pick the thing to
clock - and I don’t have to remember if I need to look in the ONGOING list or
the NEXT list when looking for the task to clock-in. The NEXT list is basically
‘what is current’ - any task that moves a project forward. I want to find the
thing to work on as fast as I can and actually do work on it - not spend time
hunting through my org files for the task that needs to be clocked-in.

To drop a task off the NEXT list simply move it back to the TODO state.

5.3 Reading email, newsgroups, and conversations on IRC

When reading email, newsgroups, and conversations on IRC I just let the
default task (normally ** Organization) clock the time I spend on these
tasks. To read email I go to Gnus and read everything in my inboxes. If
there are emails that require a response I use org-capture to create a new
task with a heading of ‘Respond to <user>’ for each one. This automatically
links to the email in the task and makes it easy to find later. Some emails
are quick to respond to and some take research and a significant amount of
time to complete. I clock each one in it’s own task just in case I need that
clocked time later.

28

Next, I go to my newly created tasks to be refiled from the block agenda
with F12 a and clock in an email task and deal with it. Repeat this until all
of the ‘Respond to <user>’ tasks are marked DONE.

I read email and newgroups in Gnus so I don’t separate clocked time for
quickly looking at things. If an article has a useful piece of information I
want to remember I create a note for it with C-M-r n and enter the topic
and file it. This takes practically no time at all and I know the note is safely
filed for later retrieval. The time I spend in the capture buffer is clocked
with that capture note.

5.4 Filtering

So many tasks, so little time. I have hundreds of tasks at any given time
(373 right now). There is so much stuff to look at it can be daunting. This
is where agenda filtering saves the day.

It’s 11:53AM and I’m in work mode just before lunch. I don’t want to
see tasks that are not work related right now. I also don’t want to work on
a big project just before lunch. . . so I need to find small tasks that I can
knock off the list.

How do we do this? Get a list of NEXT tasks from the block agenda and
then narrow it down with filtering. Tasks are ordered in the NEXT agenda
view by estimated effort so the short tasks are first – just start at the top
and work your way down. I can limit the displayed agenda tasks to those
estimates of 10 minutes or less with / + 1 and I can pick something that
fits the minutes I have left before I take off for lunch.

5.4.1 Automatically removing context based tasks with / RET

/ RET in the agenda is really useful. This awesome feature was added to org-
mode by John Wiegley. It removes tasks automatically by filtering based on
a user-provided function.

I work from home and set up my day as follows:

• On weekdays 8am-12am, 1pm-5pm I’m working (@office)

• My son (Mark) is available on weekdays before school 8am-9am and
after school to bedtime 4pm-8pm (MARK), and weekends 10am-8pm

• Personal tasks are done outside working hours (PERSONAL)

• Work tasks are done during working hours (WORK)

29

I have the following setup to allow / RET to filter tasks based on what
the computer determines my current context to be at the time I run the /
RET filter command.

(defun bh/weekday−p ()
(l et ((wday (nth 6 (decode−time))))

(and (< wday 6)
(> wday 0))))

(defun bh/working−p ()
(l et ((hour (nth 2 (decode−time))))

(and (bh/weekday−p)
(or (and (>= hour 8) (<= hour 11))

(and (>= hour 13) (<= hour 1 6))))))

(defun bh/org−auto−exclude− function (tag)
"Automatic␣ task ␣ ex c l u s i on ␣ in ␣ the ␣agenda␣with␣/␣RET"
(and (cond

((string= tag "@farm")
t)

((or (string= tag "@errand") (string= tag "phone"))
(l et ((hour (nth 2 (decode−time))))

(or (< hour 8) (> hour 2 1))))
(t
(i f (bh/working−p)

(s e tq tag "PERSONAL")
(se tq tag "WORK"))

(unless (member (concat "−" tag) org−agenda− f i l te r)
tag)))

(concat "−" tag)))

(s e tq org−agenda−auto−exclude−function ’bh/org−auto−exclude− function)

This lets me filter tasks with just / RET on the agenda which removes
tasks I’m not supposed to be working on now from the list of returned results.

This helps to keep my agenda clutter-free.

6 Time Clocking

Okay, I admit it. I’m a clocking fanatic.

30

I clock everything (well almost everything). Org-mode makes this really
easy. I’d rather clock too much stuff than not enough so I find it’s easier to
get in the habit of clocking everything.

As an example of what I mean my clock data for April 20, 2009 shows
14 hours 19 minutes of clocked time (which included 3 hours and 17 minutes
of painting my basement.) My clocked day started at 6:57AM and ended at
23:11PM. I have only a few holes in my clocked day (where I wasn’t clocking
anything):

Missing Clock Data
16:14-16:53
16:55-17:19
18:00-18:52

This makes it possible to look back at the day and see where I’m spending
too much time, or not enough time on specific projects.

Without clocking data it’s hard to tell what you did after the fact.
I now use the concept of punching in and punching out at the start and

end of my work day. This defines a default task to clock time on whenever
the clock would normally stop. I found that with the default org-mode setup
I would lose clocked minutes during the day, a minute here, a minute there,
and that all adds up. This is especially true if you write notes when moving
to a DONE state - in this case the clock normally stops before you have
composed the note – and good notes take a few minutes to write.

My clocking setup basically works like this:

• Punch in (start the clock)

– This identifies a task that is the default task to clock in whenever
the clock normally stops

• Clock in tasks normally, and let moving to a DONE state clock out

– clocking out automatically clocks time on a new task

• Continue clocking whatever tasks you work on

• Punch out (stop the clock)

I’m free to change the default task multiple times during the day. If I
punch-in with a prefix on a task in Project X then that task automatically
becomes the default task and all clocked time goes on that project until I
either punch out or punch in some other task.

31

My org files look like this:
todo.org:

#+FILETAGS: PERSONAL
...
* Tasks
** Organization
:PROPERTIES:
:CLOCK_MODELINE_TOTAL: today
:ID: eb155a82-92b2-4f25-a3c6-0304591af2f9
:END:
...

If I am working on some task, then I simply clock in on the task. Clocking
out moves the clock up to a parent task with a todo keyword (if any) which
keeps the clock time in the same subtree. If there is no parent task with a
todo keyword then the clock moves back to the default clocking task until I
punch out or clock in some other task. When an interruption occurs I start
a capture task which keeps clocked time on the interruption task until I close
it with C-c C-c.

This works really well for me.
For example, consider the following org file:

* TODO Project A
** NEXT TASK 1
** TODO TASK 2
** TODO TASK 3
* Tasks
** TODO Some miscellaneous task

I’ll work on this file in the following sequence:

1. I punch in with F9-I at the start of my day

That clocks in the Organization task by id in my todo.org file.

2. F12-SPC to review my block agenda

Pick ‘TODO Some miscellaneous task’ to work on next and clock that
in with I The clock is now on ‘TODO Some miscellaneous task’

3. I complete that task and mark it done with C-c C-t d

This stops the clock and moves it back to the Organization task.

32

4. Now I want to work on Project A so I clock in Task 1

I work on Task 1 and mark it DONE. This clocks out Task 1 and moves
the clock to Project A. Now I work on Task 2 and clock that in.

The entire time I’m working on and clocking some subtask of Project
A all of the clock time in the interval is applied somewhere to the Project
A tree. When I eventually mark Project A done then the clock will move
back to the default organization task.

6.1 Clock Setup

To get started we need to punch in which clocks in the default task and keeps
the clock running. This is now simply a matter of punching in the clock with
F9 I. You can do this anywhere. Clocking out will now clock in the parent
task (if there is one with a todo keyword) or clock in the default task if not
parent exists.

Keeping the clock running when moving a subtask to a DONE state means
clocking continues to apply to the project task. I can pick the next task
from the parent and clock that in without losing a minute or two while I’m
deciding what to work on next.

I keep clock times, state changes, and other notes in the :LOGBOOK:
drawer.

I have the following org-mode settings for clocking:

; ;
; ; Resume c l o c k i n g t a s k s when emacs i s r e s t a r t e d
(org−c lock−pers i s t ence− in s inuate)
; ;
; ; Smal l windows on my Eee PC d i s p l a y s on ly the end o f long l i s t s which isn ’ t very u s e f u l
(s e tq org−c lock−history− l ength 10)
; ; Resume c l o c k i n g t a s k on clock− in i f the c l o c k i s open
(s e tq org−clock−in−resume t)
; ; Change t a s k to STARTED when c l o c k i n g in
(s e tq org−clock− in−switch−to−state ’ bh/ clock− in−to−started)
; ; Separate drawers f o r c l o c k i n g and l o g s
(s e tq org−drawers (quote ("PROPERTIES" "LOGBOOK")))
; ; Save c l o c k data and s t a t e changes and notes in the LOGBOOK drawer
(s e tq org−clock− into−drawer t)
; ; Sometimes I change t a s k s I ’m c l o c k i n g q u i c k l y − t h i s removes c l o c ked t a s k s wi th 0:00 dura t ion
(s e tq org−clock−out−remove−zero−time−clocks t)
; ; Clock out when moving t a s k to a done s t a t e

33

(s e tq org−clock−out−when−done t)
; ; Save the running c l o c k and a l l c l o c k h i s t o r y when e x i t i n g Emacs , load i t on s t a r t up
(s e tq org−c lock−pers i s t (quote h i s t o r y))
; ; Enable auto c l o c k r e s o l u t i o n f o r f i n d i n g open c l o c k s
(s e tq org−c lock−auto−c lock−resolut ion (quote when−no−clock−is−running))
; ; Inc lude curren t c l o c k i n g t a s k in c l o c k r epo r t s
(s e tq org−clock−report− inc lude−clocking−task t)

(s e tq bh/keep−clock−running n i l)

(defun bh/ clock− in−to−started (kw)
"Switch␣ task ␣ from␣TODO␣or ␣NEXT␣ to ␣STARTED␣when␣ c l o ck i ng ␣ in .

Skips ␣ capture ␣ ta sk s . "
(i f (and (member (org−get−todo−state) (l i s t "TODO" "NEXT"))

(not (and (boundp ’ org−capture−mode) org−capture−mode)))
"STARTED"))

(defun bh/ f ind−project− task ()
"Move␣ po int ␣ to ␣ the ␣ parent ␣ (p r o j e c t) ␣ task ␣ i f ␣any"
(l et ((parent−task (save−excurs ion (org−back−to−heading) (po int))))

(whi l e (org−up−heading−safe)
(when (member (nth 2 (org−heading−components)) org−todo−keywords−1)

(s e tq parent−task (po int))))
(goto−char parent−task)
parent−task))

(add−hook ’ org−agenda−mode−hook ’ (lambda () (org−defkey org−agenda−mode−map "\C−c\C−x<" ’bh/ set−agenda− res t r i c t ion− l ock) ’append))

(defun bh/ set−agenda− res t r i c t ion− l ock (arg)
" Set ␣ r e s t r i c t i o n ␣ lock ␣ to ␣ cur r ent ␣ subt ree ␣ or ␣ f i l e ␣ i f ␣ p r e f i x ␣ i s ␣ s p e c i f i e d "
(i n t e r a c t i v e "p")
(l et ∗ ((pom (org−get−at−bol ’ org−hd−marker))

(tags (org−with−point−at pom (org−get−tags−at))))
(l et ((r e s t r i c t i on− t yp e (i f (equal arg 4) ’ f i l e ’ subt ree)))

(cond
((equal major−mode ’ org−agenda−mode)
(org−with−point−at pom

(org−agenda−set−restr ict ion− lock r e s t r i c t i on− t yp e)))
((and (equal major−mode ’ org−mode) (org−before− f irst−heading−p))
(org−agenda−set−restr ict ion− lock ’ f i l e))

34

(t
(org−with−point−at pom

(org−agenda−set−restr ict ion− lock r e s t r i c t i on− t yp e)))))))

(defun bh/punch−in (arg)
" Sta r t ␣ cont inuous ␣ c l o ck i ng ␣and␣ s e t ␣ the ␣ d e f au l t ␣ task ␣ to ␣ the

s e l e c t e d ␣ task . ␣␣ I f ␣no␣ task ␣ i s ␣ s e l e c t e d ␣ s e t ␣ the ␣Organizat ion ␣ task
as ␣ the ␣ d e f au l t ␣ task . "

(i n t e r a c t i v e "p")
(s e tq bh/keep−clock−running t)
(i f (equal major−mode ’ org−agenda−mode)

; ;
; ; We’ re in the agenda
; ;
(l et ∗ ((marker (org−get−at−bol ’ org−hd−marker))

(tags (org−with−point−at marker (org−get−tags−at))))
(i f (and (eq arg 4) tags)

(org−agenda−clock−in ’ (1 6))
(bh/ clock− in−organizat ion−task−as−default)))

; ;
; ; We are not in the agenda
; ;
(s a v e− r e s t r i c t i o n

(widen)
; Find the t a g s on the curren t t a s k
(i f (and (equal major−mode ’ org−mode) (not (org−before− f irst−heading−p)) (eq arg 4))

(org−clock− in ’ (1 6))
(bh/ clock− in−organizat ion−task−as−default)))))

(defun bh/punch−out ()
(i n t e r a c t i v e)
(s e tq bh/keep−clock−running n i l)
(when (org−c lock− i s−act ive)

(org−clock−out))
(org−agenda−remove−restriction− lock))

(defun bh/ clock− in−default−task ()
(save−excurs ion

(org−with−point−at org−clock−default−task
(org−clock− in))))

35

(defun bh/clock− in−parent−task ()
"Move␣ po int ␣ to ␣ the ␣ parent ␣ (p r o j e c t) ␣ task ␣ i f ␣any␣and␣ c l o ck ␣ in "
(l et ((parent−task))

(save−excurs ion
(s av e− r e s t r i c t i o n

(widen)
(whi l e (and (not parent−task) (org−up−heading−safe))

(when (member (nth 2 (org−heading−components)) org−todo−keywords−1)
(s e tq parent−task (po int))))

(i f parent−task
(org−with−point−at (or parent−task)

(org−clock− in))
(when bh/keep−clock−running

(bh/ clock− in−default−task)))))))

(defvar bh/ organizat ion−task− id "eb155a82−92b2−4f25−a3c6−0304591af2f9")

(defun bh/ clock− in−organizat ion−task−as−default ()
(i n t e r a c t i v e)
(s a v e− r e s t r i c t i o n

(widen)
(org−with−point−at (org− id− f ind bh/ organizat ion−task− id ’ marker)

(org−clock− in ’ (1 6)))))

(defun bh/clock−out−maybe ()
(when (and bh/keep−clock−running

(not org−clock−clocking− in)
(marker−buffer org−clock−default−task)
(not org−c lock−resolving−c locks−due−to− id leness))

(bh/ clock− in−parent−task)))

(add−hook ’ org−clock−out−hook ’bh/clock−out−maybe ’append)

I used to clock in tasks by ID using the following function but with the
new punch-in and punch-out I don’t need these as much anymore. f9-SPC
calls bh/clock-in-last-task which switches the clock back to the previ-
ously clocked task.

(require ’ org− id)
(defun bh/clock−in−task−by−id (id)

36

"Clock␣ in ␣a␣ task ␣by␣ id "
(s av e− r e s t r i c t i o n

(widen)
(org−with−point−at (org− id− f ind id ’marker)

(org−clock− in n i l))))

(defun bh/ clock− in− last−task (arg)
"Clock␣ in ␣ the ␣ in t e r rup t ed ␣ task ␣ i f ␣ the re ␣ i s ␣one

Skip ␣ the ␣ d e f au l t ␣ task ␣and␣ get ␣ the ␣next ␣one .
A␣ p r e f i x ␣ arg ␣ f o r c e s ␣ c l o ck ␣ in ␣ o f ␣ the ␣ d e f au l t ␣ task . "

(i n t e r a c t i v e "p")
(l et ((clock− in−to−task

(cond
((eq arg 4) org−clock−default−task)
((and (org−c lock− i s−act ive)

(equal org−clock−default−task (cadr org−c lock−history)))
(caddr org−c lock−history))

((org−c lock− i s−act ive) (cadr org−c lock−history))
((equal org−clock−default−task (car org−c lock−history)) (cadr org−c lock−history))
(t (car org−c lock−history)))))

(org−with−point−at clock− in−to−task
(org−clock− in n i l))))

6.2 Clocking in

When I start or continue working on a task I clock it in with any of the
following:

• C-c C-x C-i

• I in the agenda

• I speed key on the first character of the heading line

• f9 I while on the task in the agenda

• f9 I while in the task in an org file

6.2.1 Setting a default clock task

I have a default ** Organization task in my todo.org file that I tend to
put miscellaneous clock time on. This is the task I clock in on when I punch

37

in at the start of my work day with F9-I. While reorganizing my org-files,
reading email, clearing my inbox, and doing other planning work that isn’t
for a specific project I’ll clock in this task. Punching-in anywhere clocks in
this Organization task as the default task.

If I want to change the default clocking task I just visit the new task
in any org buffer and clock it in with C-u C-u C-c C-x C-i. Now this new
task that collects miscellaneous clock minutes when the clock would normally
stop.

You can quickly clock in the default clocking task with C-u C-c C-x
C-i d. Another option is to repeatedly clock out so the clock moves up the
project tree until you clock out the top-level task and the clock moves to the
default task.

6.2.2 Using the clock history to clock in old tasks

You can use the clock history to restart clocks on old tasks you’ve clocked
or to jump directly to a task you have clocked previously. I use this mainly
to clock in whatever got interrupted by something.

Consider the following scenario:

• You are working on and clocking Task A (Organization)

• You get interrupted and switch to Task B (Document my use of org-
mode)

• You complete Task B (Document my use of org-mode)

• Now you want to go back to Task A (Organization) again to continue

This is easy to deal with.

1. Clock in Task A, work on it

2. Go to Task B (or create a new task) and clock it in

3. When you are finished with Task B hit C-u C-c C-x C-i i

This displays a clock history selection window like the following and
selects the interrupted [i] entry.

Clock history selection buffer for C-u C-c C-x C-i

38

Default Task
[d] norang Organization <-- Task B
The task interrupted by starting the last one
[i] norang Organization <-- Task B
Current Clocking Task
[c] org NEXT Document my use of org-mode <-- Task A
Recent Tasks
[1] org NEXT Document my use of org-mode <-- Task A
[2] norang Organization <-- Task B
...
[Z] org DONE Fix default section links <-- 35 clock task entries ago

6.3 Clock Everything - Create New Tasks

In order to clock everything you need a task for everything. That’s fine for
planned projects but interruptions inevitably occur and you need some place
to record whatever time you spend on that interruption.

To deal with this we create a new capture task to record the thing we
are about to do. The workflow goes something like this:

• You are clocking some task and an interruption occurs

• Create a quick capture task journal entry C-M-r j

• Type the heading

• go do that thing (eat lunch, whatever)

• file it C-c C-c, this restores the clock back to the previous clocking
task

• clock something else in or continue with the current clocking task

This means you can ignore the details like where this task really belongs
in your org file layout and just get on with completing the thing. Refiling a
bunch of tasks later in a group when it is convenient to refile the tasks saves
time in the long run.

If it’s a one-shot uninteresting task (like a coffee break) I create a capture
journal entry for it that goes to the diary.org date tree. If it’s a task that
actually needs to be tracked and marked done, and applied to some project
then I create a capture task instead which files it in refile.org.

39

6.4 Finding tasks to clock in

To find a task to work on I use one of the following options (generally listed
most frequently used first)

• Use the clock history C-u C-c C-x C-i Go back to something I was
clocking that is not finished

• Pick something off today’s block agenda SCHEDULED or DEADLINE items
that need to be done soon

• Pick something off the NEXT tasks agenda view Work on some unfin-
ished task to move to completion

• Pick something off the other task list

• Use an agenda view with filtering to pick something to work on

Punching in on the task you select will restrict the agenda view to that
project so you can focus on just that thing for some period of time.

6.5 Editing clock entries

Sometimes it is necessary to edit clock entries so they reflect reality. I find
I do this for maybe 2-3 entries in a week.

Occassionally I cannot clock in a task on time because I’m away from my
computer. In this case the previous clocked task is still running and counts
time for both tasks which is wrong.

I make a note of the time and then when I get back to my computer I
clock in the right task and edit the start and end times to correct the clock
history.

To visit the clock line for an entry quickly use the agenda log mode. F12
a l shows all clock lines for today. I use this to navigate to the appropriate
clock lines quickly. F11 goes to the current clocked task but the agenda log
mode is better for finding and visiting older clock entries.

Use F12 a l to open the agenda in log mode and show only logged clock
times. Move the cursor down to the clock line you need to edit and hit TAB
and you’re there.

To edit a clock entry just put the cursor on the part of the date you
want to edit (use the keyboard not the mouse - since the clicking on the
timestamp with the mouse goes back to the agenda for that day) and hit the
S-<up arrow> or S-<down arrow> keys to change the time.

40

The following setting makes time editing use discrete minute intervals
(no rounding) increments:

(s e tq org−time−stamp−rounding−minutes (quote (1 1)))

Editing the time with the shift arrow combination also updates the total
for the clock line which is a nice convenience.

I always check that I haven’t created task overlaps when fixing time clock
entries by viewing them with log mode on in the agenda. There is a new
view in the agenda for this – just hit v c in the daily agenda and clock gaps
and overlaps are identified.

I want my clock entries to be as accurate as possible.
The following setting shows 1 minute clocking gaps.

(s e tq org−agenda−clock−consistency−checks
(quote (: max−duration " 4 :00 "

: min−duration 0
:max−gap 0
: gap−ok−around (" 4 :00 "))))

6.6 Automatically clocking tasks

I spend time on an open source project called BZFlag. During work for
releases I want to clock the time I spend testing the new BZFlag client. I
have a key binding in my window manager that runs a script which starts
the clock on my testing task, runs the BZFlag client, and on exit resumes
the clock on the previous clocking task.

The testing task has an ID property of dcf55180-2a18-460e-8abb-a9f02f0893be
and the following elisp code starts the clock on this task.

(defun bh/ clock− in−bzf lagt−task ()
(i n t e r a c t i v e)
(bh/clock−in−task−by−id "dcf55180−2a18−460e−8abb−a9f02f0893be"))

This is invoked by a bash shell script as follows:

#!/ bin / sh
emacsc l i en t −e ’ (bh/ c lock−in−bz f l ag t−task) ’
~/ g i t / b z f l a g / trunk/ bz f l a g / s r c / b z f l a g / b z f l a g −d i r e c t o r y ~/ g i t / b z f l a g / trunk/ bz f l a g /data $∗
emacsc l i en t −e ’ (bh/resume−c l o ck) ’

The resume clock function just returns the clock to the previous clocking
task

41

(defun bh/ resume−clock ()
(i n t e r a c t i v e)
(i f (marker−buffer org−clock− interrupted−task)

(org−with−point−at org−clock− interrupted−task
(org−clock− in))

(org−clock−out)))

If no task was clocking bh/resume-clock just stops the clock.

7 Time reporting and tracking

7.1 Billing clients based on clocked time

At the beginning of the month I invoice my clients for work done last month.
This is where I review my clocking data for correctness before billing for the
clocked time.

Billing for clocked time basically boils down to the following steps:

1. Verify that the clock data is complete and correct

2. Use clock reports to summarize time spent

3. Create an invoice based on the clock data

I currently create invoices in an external software package based on the
org-mode clock data.

4. Archive complete tasks so they are out of the way.

See Archiving for more details.

7.1.1 Verify that the clock data is complete and correct

Since I change tasks often (sometimes more than once in a minute) I use the
following setting to remove clock entries with a zero duration.

; ; Sometimes I change t a s k s I ’m c l o c k i n g q u i c k l y − t h i s removes c l o c ked t a s k s wi th 0:00 dura t ion
(s e tq org−clock−out−remove−zero−time−clocks t)

This setting just keeps my clocked log entries clean - only keeping clock
entries that contribute to the clock report.

Before invoicing for clocked time it is important to make sure your clocked
time data is correct. If you have a clocked time with an entry that is not
closed (ie. it has no end time) then that is a hole in your clocked day and

42

it gets counted as zero (0) for time spent on the task when generating clock
reports. Counting it as zero is almost certainly wrong.

To check for unclosed clock times I use the agenda-view clock check (v c
in the agenda). This view shows clocking gaps and overlaps in the agenda.

To check the last month’s clock data I use F12 a v m b v c which shows
a full month in the agenda, moves to the previous month, and shows the
clocked times only. It’s important to remove any agenda restriction locks
and filters when checking the logs for gaps and overlaps.

The clocked-time only display in the agenda makes it easy to quickly
scan down the list to see if an entry is missing an end time. If an entry is
not closed you can manually fix the clock entry based on other clock info
around that time.

Use the following setup to get log mode in the agenda to only show
clocked times:

; ; Agenda l o g mode i tems to d i s p l a y (c l o c k time only by d e f a u l t)
(s e tq org−agenda−log−mode−items (quote (c l o ck)))

7.1.2 Using clock reports to summarize time spent

Billable time for clients are kept in separate org files.
To get a report of time spent on tasks for XYZ.org you simply visit the

XYZ.org file and run an agenda clock report for the last month with F12 <
a v m b R. This limits the agenda to this one file, shows the agenda for a
full month, moves to last month, and generates a clock report.

My agenda org clock report settings show 5 levels of detail with links to
the tasks.

; ; Agenda c l o c k r epor t parameters
(s e tq org−agenda−clockreport−parameter−plist

(quote (: l i n k t : maxlevel 5 : f i l e s k i p 0 t : compact t)))

I used to have a monthly clock report dynamic block in each project
org file and manually updated them at the end of my billing cycle. I used
this as the basis for billing my clients for time spent on their projects. I
found updating the dynamic blocks fairly tedious when you have more than
a couple of files for the month.

I have since moved to using agenda clock reports shortly after that feature
was added. I find this much more convenient. The data isn’t normally for
consumption by anyone else so the format of the agenda clock report format
is great for my use-case.

43

7.2 Task Estimates and column view

Estimating how long tasks take to complete is a difficult skill to master.
Org-mode makes it easy to practice creating estimates for tasks and then
clock the actual time it takes to complete.

By repeatedly estimating tasks and reviewing how your estimate relates
to the actual time clocked you can tune your estimating skills.

7.2.1 Creating a task estimate with column mode

I use properties and column view to do project estimates.
I set up column view globally with the following headlines

; Set d e f a u l t column view headings : Task E f f o r t Clock_Summary
(s e tq org−columns−default−format "%80ITEM(Task) ␣%10E f f o r t (E f f o r t) { : } ␣%10CLOCKSUM")

This makes column view show estimated task effort and clocked times
side-by-side which is great for reviewing your project estimates.

A property called Effort records the estimated amount of time a given
task will take to complete. The estimate times I use are one of:

• 10 minutes

• 30 minutes

• 1 hour

• 2 hours

• 3 hours

• 4 hours

• 5 hours

• 6 hours

• 7 hours

• 8 hours

These are stored for easy use in column mode in the global property
Effort_ALL.

; g l o b a l E f f o r t e s t ima te va l u e s
(s e tq org−g loba l−propert i e s (quote (("Effort_ALL" . " 0 :10 ␣ 0 :30 ␣ 1 :00 ␣ 2 :00 ␣ 3 :00 ␣ 4 :00 ␣ 5 :00 ␣ 6 :00 ␣ 7 :00 ␣ 8 :00 "))))

44

To create an estimate for a task or subtree start column mode with C-c
C-x C-c and collapse the tree with c. This shows a table overlayed on top
of the headlines with the task name, effort estimate, and clocked time in
columns.

With the cursor in the Effort column for a task you can easily set the
estimated effort value with the quick keys 1 through 9.

After setting the effort values exit column mode with q.

7.2.2 Saving your estimate

For fixed price jobs where you provide your estimate to a client, then work to
complete the project it is useful to save the original estimate that is provided
to the client.

Save your original estimate by creating a dynamic clock report table at
the top of your estimated project subtree. Entering C-c C-x i RET inserts a
clock table report with your estimated values and any clocked time to date.

Original Estimate
#+BEGIN: columnview :hlines 1 :id local
| Task | Estimated Effort | CLOCKSUM |
|-----------------------------+------------------+----------|
** TODO Project to estimate	5:40	
*** TODO Step 1	0:10	
*** TODO Step 2	0:10	
*** TODO Step 3	5:10	
**** TODO Step 3.1	2:00	
**** TODO Step 3.2	3:00	
**** TODO Step 3.3	0:10	
*** TODO Step 4	0:10	
#+END:

I normally delete the #+BEGIN: and #+END: lines from the original table
after providing the estimate to the client to ensure I don’t accidentally update
the table by hitting C-c C-c on the #+BEGIN: line.

Saving the original estimate data makes it possible to refine the project
tasks into subtasks as you work on the project without losing the original
estimate data.

45

7.2.3 Reviewing your estimate

Column view is great for reviewing your estimate. This shows your estimated
time value and the total clock time for the project side-by-side.

Creating a dynamic clock table with C-c C-x i RET is a great way to
save this project review if you need to make it available to other applications.

C-c C-x C-d also provides a quick summary of clocked time for the cur-
rent org file.

8 Tags

Tasks can have any number of arbitrary tags. Tags are used for:

• filtering todo lists and agenda views

• providing context for tasks

• tagging notes

• tagging phone calls

• tagging tasks to be refiled

• tagging tasks in a WAITING state because a parent task is WAITING

• tagging cancelled tasks because a parent task is CANCELLED

• preventing export of some subtrees when publishing

I use tags mostly for filtering in the agenda. This means you can find
tasks with a specific tag easily across your large number of org-mode files.

Some tags are mutually exclusive. These are defined in a group so that
only one of the tags can be applied to a task at a time (disregarding tag
inheritance). I use these types for tags for applying context to a task. (Work
tasks have an @office tag, and are done at the office, Farm tasks have an
@farm tag and are done at the farm – I can’t change the oil on the tractor if
I’m not at the farm. . . so I hide these and other tasks by filtering my agenda
view to only @office tasks when I’m at the office.)

Tasks are grouped together in org-files and a #+FILETAGS: entry applies
a tag to all tasks in the file. I use this to apply a tag to all tasks in the file.
My norang.org file creates a NORANG file tag so I can filter tasks in the
agenda in the norang.org file easily.

46

8.1 Tags

Here are my tag definitions with associated keys for filtering in the agenda
views.

The startgroup - endgroup (@XXX) tags are mutually exclusive - selecting
one removes a similar tag already on the task. These are the context tags
- you can’t be in two places at once so if a task is marked with @farm and
you add @office then the @farm tag is removed automagically.

The other tags QUOTE .. CANCELLED are not mutually exclusive and mul-
tiple tags can appear on a single task. Some of those tags are created by
todo state change triggers. The shortcut key is used to add or remove the
tag using C-c C-q or to apply the task for filtering on the agenda.

I have both FARM and @farm tags. FARM is set by a FILETAGS entry and
just gives me a way to filter anything farm related. The @farm tag signifies
that the task as to be done at the farm. If I have to call someone about
something that would have a FARM tag but I can do that at home on my
lunch break. I don’t physically have to be at the farm to make the call.

; Tags wi th f a s t s e l e c t i o n keys
(s e tq org−tag−al i s t (quote ((: s ta r tg roup)

("@errand" . ? e)
(" @o f f i c e " . ?o)
("@home" . ?h)
("@farm" . ? f)
(: endgroup)
("PHONE" . ?p)
("QUOTE" . ?q)
("WAITING" . ?w)
("PERSONAL" . ?P)
("WORK" . ?W)
("FARM" . ?F)
("ORG" . ?O)
("NORANG" . ?N)
(" crypt " . ?E)
("MARK" . ?M)
("NOTE" . ?n)
("BZFLAG" . ?B)
("CANCELLED" . ? c)
("FLAGGED" . ? ?))))

; Allow s e t t i n g s i n g l e t a g s wi thou t the menu

47

(s e tq org− fast−tag−se lect ion−s ingle−key (quote expert))

; For tag searches i gnore t a s k s wi th schedu l ed and dead l i n e da te s
(s e tq org−agenda−tags−todo−honor−ignore−options t)

8.2 Filetags

Filetags are a convenient way to apply one or more tags to all of the headings
in a file.

Filetags look like this:

#+FILETAGS: NORANG @office

I have the following #+FILETAGS: entries in my org-mode files:

8.2.1 Non-work related org-mode files

File Tags
todo.org PERSONAL
gsoc2009.org GSOC PERSONAL
bzflag.org BZFLAG @home PERSONAL
git.org GIT WORK
org.org ORG WORK
mark.org MARK PERSONAL
farm.org FARM PERSONAL

8.2.2 Work related org-mode files

File Tags
norang.org NORANG @office
ABC.org ABC @office
XYZ.org XYZ @office
ABC-DEF.org ABC DEF @office
ABC-KKK.org ABC KKK @office
YYY.org YYY @office

8.2.3 Refile tasks

File Tags
refile.org REFILE

48

8.3 Trigger Tags

The following tags are automatically added or removed by todo state triggers
described previously in ToDo state triggers

• WAITING

• CANCELLED

9 Handling Notes

Notes are little gems of knowledge that you come across during your day.
They are just like tasks except there is nothing to do (except learn and
memorize the gem of knowledge). Unfortunately there are way too many
gems to remember and my head explodes just thinking about it.

org-mode to the rescue!
Often I’ll find some cool feature or thing I want to remember while read-

ing the org-mode and git mailing lists in Gnus. To create a note I use my
note capture template C-M-r n, type a heading for the note and C-c C-c to
save it. The only other thing to do is to refile it (later) to the appropriate
project file.

I have an agenda view just to find notes. Notes are refiled to an ap-
propriate project file and task. If there is no specific task it belongs to it
goes to the catchall * Notes task. I generally have a catchall notes task in
every project file. Notes are created with a NOTE tag already applied by the
capture template so I’m free to refile the note anywhere. As long as the note
is in a project file that contributes to my agenda (ie. in org-agenda-files)
then I can find the note back easily with my notes agenda view by hitting
the key combination F12 N. I’m free to limit the agenda view of notes using
standard agenda tag filtering.

Short notes with a meaningful headline are a great way to remember
technical details without the need to actually remember anything - other
than how to find them back when you need them using F12 N.

Notes that are project related and not generally useful can be archived
with the project and removed from the agenda when the project is removed.

So my org notes go in org.org and my git notes go in git.org both under
the * Notes task. I’ll forever be able to find those. A note about some work
project detail I want to remember with the project is filed to the project
task under the appropriate work org-mode file and eventually gets removed
from the agenda when the project is complete and archived.

49

10 Handling Phone Calls

Phone calls are interruptions and I use capture mode to deal with these
(like all interruptions). Most of the heavy lifting for phone calls is done by
capture mode. I use a special capture template for phone calls combined
with a custom function that replaces text with information from my bbdb
addressbook database.

C-M-r p starts a capture task normally and I’m free to enter notes from
the call in the template immediately. The cursor starts in the template
normally where the name of the caller would be inserted. I can use a bbdb
lookup function to insert the name with f9-p or I can just type in whatever
is appropriate. If a bbdb entry needs to be created for the caller I can do that
and replace the caller details with f9-p anytime that is convenient for me. I
found that automatically calling the bbdb lookup function would interrupt
my workflow during the call in cases where the information about the caller
was not readily available. Sometimes I want to make notes first and get the
caller details later during the call.

The phone call capture template starts the clock as soon as the phone
rings and I’m free to lookup and replace the caller in bbdb anytime during or
after the call. Capture mode starts the clock using the :clock-in t setting
in the template.

When the phone call ends I simple do C-c C-c to close the capture buffer
and stop the clock. If I have to close it early and look up other information
during the call I just do C-c C-c F9-SPC to close the capture buffer (which
stops the clock) and then immediately switch back to the last clocked item
to continue the clock in the phone call task. When the phone call ends I
clock out which normally clocks in my default task again (if any).

Here is my set up for phone calls. I would like to thank Gregory J.
Grubbs for the original bbdb lookup functions which this version is based
on.

Below is the partial capture template showing the phone call template
followed by the phone-call related lookup functions.

; ; Capture t emp la t e s f o r : TODO tasks , Notes , appointments , phone c a l l s , and org−protoco l
(s e tq org−capture−templates

(quote (. . .
("p" "Phone␣ c a l l " entry (f i l e "~/ g i t / org / r e f i l e . org ")
"∗␣PHONE␣%?␣ :PHONE:\ n%U" : c lock− in t : clock−resume t)
. . .)))

(require ’ bbdb)

50

(require ’bbdb−com)

(global−set−key (kbd "<f9>␣p") ’bh/phone−cal l)

; ;
; ; Phone capture temp la te hand l ing wi th BBDB lookup
; ; Adapted from code by Gregory J . Grubbs
(defun bh/phone−cal l ()

"Return␣name␣and␣company␣ i n f o ␣ f o r ␣ c a l l e r ␣ from␣bbdb␣ lookup"
(i n t e r a c t i v e)
(l et ∗ (name rec c a l l e r)

(s e tq name (completing−read "Who␣ i s ␣ c a l l i n g ?␣"
(bbdb−hashtable)
’ bbdb−completion−predicate
’ conf i rm))

(when (> (length name) 0)
; Something was supp l i e d − l ook i t up in bbdb
(s e tq rec

(or (f i r s t
(or (bbdb−search (bbdb−records) name n i l n i l)

(bbdb−search (bbdb−records) n i l name n i l)))
name)))

; Bui ld the bbdb l i n k i f we have a bbdb record , o the rw i s e j u s t re turn the name
(s e tq c a l l e r (cond ((and r e c (vectorp r e c))

(l et ((name (bbdb−record−name rec))
(company (bbdb−record−company rec)))

(concat " [[bbdb : "
name "] ["
name "]] "
(when company

(concat "␣−␣" company)))))
(r e c)
(t "NameOfCaller")))

(i n s e r t c a l l e r)))

51

11 GTD stuff

Most of my day is deadline/schedule driven. I work off of the agenda first
and then pick items from the todo lists as outlined in What do I work on
next?

11.1 Weekly Review Process

The first day of the week (usually Monday) I do my weekly review. I keep a
list like this one to remind me what needs to be done.

To keep the agenda fast I set

(s e tq org−agenda−ndays 1)

so only today’s date is shown by default. I only need the weekly view during
my weekly review and this keeps my agenda generation fast.

I have a recurring task which keeps my weekly review checklist handy.
This pops up as a reminder on Monday’s. This week I’m doing my weekly
review on Tuesday since Monday was a holiday.

** NEXT Weekly Review [0/8]
\texttt{SCHEDULED:} <2009-05-18 Mon ++1w>

LOGBOOK:...
PROPERTIES:...

What to review:

- [] Check follow-up folder
- [] Review weekly agenda F12 a w //
- [] Check clocking data for past week v c b
- [] Review clock report for past week R

- Check where we spent time (too much or too little) and rectify this week

- start work
- daily agenda first - knock off items
- then work on NEXT tasks

The first item [] Check follow-up folder makes me pull out the paper file
I dump stuff into all week long - things I need to take care of but are in no
particular hurry to deal with. Stuff I get in the mail etc. that I don’t want

52

to deal with now. I just toss it in my Follow-Up folder in the filing cabinet
and forget about it until the weekly review.

I go through the folder and weed out anything that needs to be dealt
with. After that everything else is in org-mode. I tend to schedule tasks
onto the agenda for the coming week so that I don’t spend lots of time
trying to find what needs to be worked on next.

This works for me. Your mileage may vary ;)

11.2 Project definition and finding stuck projects

I’m using a new lazy project definition to mark tasks as projects. This
requires zero effort from me. Any task with a subtask using a todo keyword
is a project. Period.

Projects are ‘stuck’ if they have no subtask with a NEXT or STARTED todo
keyword task defined.

The org-mode stuck projects agenda view lists projects that have no
NEXT task defined. Stuck projects show up on my block agenda and I tend
to assign a NEXT task so the list remains empty. This helps to keep projects
moving forward.

I disable the default org-mode stuck projects agenda view with the fol-
lowing setting.

(s e tq org−stuck−projects (quote ("" n i l n i l "")))

This prevents org-mode from trying to show incorrect data if I select the
default stuck project view with F12 # from the agenda menu. My customized
stuck projects view is part of my block agenda displayed with F12 a.

Projects can have subprojects - and these subprojects can also be stuck.
Any project that is stuck shows up on the stuck projects list so I can indicate
or create a NEXT task to move that project forward.

In the following example Stuck Project A is stuck because it has no
subtask which is NEXT. Project C is not stuck because it has NEXT tasks
SubTask G and Task I. Stuck Sub Project D is stuck because SubTask E
is not NEXT and there are no other tasks available in this project.

∗ Category
∗∗ TODO Stuck Pro j e c t A
∗∗∗ TODO Task B
∗∗ TODO Pro j ec t C
∗∗∗ TODO Stuck Sub Pro j e c t D
∗∗∗∗ TODO SubTask E
∗∗∗ TODO Sub Pro j e c t F

53

∗∗∗∗ NEXT SubTask G
∗∗∗∗ TODO SubTask H
∗∗∗ NEXT Task I
∗∗∗ TODO Task J

All of the stuck projects and subprojects show up in the stuck projects
list and that is my indication to assign or create NEXT tasks until the stuck
projects list is empty. Occasionally some subtask is WAITING for something
and the project is stuck until that condition is satisfied. In this case I leave it
on the stuck project list and just work on something else. This stuck project
‘bugs’ me regularly when I see it on the block agenda and this prompts me
to follow up on the thing that I’m waiting for.

I have the following helper functions defined for projects which are used
by agenda views.

(defun bh/ is−project−p ()
"Any␣ task ␣with␣a␣ todo␣keyword␣ subtask "
(l et ((has−subtask)

(subtree−end (save−excurs ion (org−end−of−subtree t)))
(is−a−task (member (nth 2 (org−heading−components)) org−todo−keywords−1)))

(save−excurs ion
(forward− l ine 1)
(whi l e (and (not has−subtask)

(< (po int) subtree−end)
(re−search− forward "^\∗+␣" subtree−end t))

(when (member (org−get−todo−state) org−todo−keywords−1)
(s e tq has−subtask t))))

(and is−a−task has−subtask)))

(defun bh/ is−subproject−p ()
"Any␣ task ␣which␣ i s ␣a␣ subtask ␣ o f ␣ another ␣ p r o j e c t "
(l et ((i s− subpro j e c t)

(is−a−task (member (nth 2 (org−heading−components)) org−todo−keywords−1)))
(save−excurs ion

(whi l e (and (not i s− subpro j ec t) (org−up−heading−safe))
(when (member (nth 2 (org−heading−components)) org−todo−keywords−1)

(s e tq i s− subpro j ec t t))))
(and is−a−task i s− subpro j e c t)))

(defun bh/ skip−non−stuck−projects ()
"Skip ␣ t r e e s ␣ that ␣ are ␣not␣ stuck ␣ p r o j e c t s "

54

(l et ∗ ((next−headl ine (save−excurs ion (or (outl ine−next−heading) (point−max))))
(subtree−end (save−excurs ion (org−end−of−subtree t)))
(has−next (save−excurs ion

(forward− l ine 1)
(and (< (po int) subtree−end)

(re−search− forward "^\\∗+␣\\(NEXT\\ |STARTED\\) ␣" subtree−end t)))))
(i f (and (bh/ is−project−p) (not has−next))

n i l ; a s tuck pro j e c t , has su b t a s k s but no next t a s k
next−headl ine)))

(defun bh/ skip−non−projects ()
"Skip ␣ t r e e s ␣ that ␣ are ␣not␣ p r o j e c t s "
(l et ((subtree−end (save−excurs ion (org−end−of−subtree t))))

(i f (bh/ is−project−p)
n i l

subtree−end)))

(defun bh/ skip−project−trees−and−habits ()
"Skip ␣ t r e e s ␣ that ␣ are ␣ p r o j e c t s "
(l et ((subtree−end (save−excurs ion (org−end−of−subtree t))))

(cond
((bh/ is−project−p)
subtree−end)

((org−is−habit−p)
subtree−end)

(t
n i l))))

(defun bh/ skip−projects−and−habits ()
"Skip ␣ t r e e s ␣ that ␣ are ␣ p r o j e c t s ␣and␣ ta sk s ␣ that ␣ are ␣ hab i t s "
(l et ((next−headl ine (save−excurs ion (or (outl ine−next−heading) (point−max)))))

(cond
((bh/ is−project−p)
next−headl ine)

((org−is−habit−p)
next−headl ine)

(t
n i l))))

(defun bh/ skip−non−subprojects ()

55

"Skip␣ t r e e s ␣ that ␣ are ␣not␣ p r o j e c t s "
(l et ((next−headl ine (save−excurs ion (outl ine−next−heading))))

(i f (bh/ is−subproject−p)
n i l

next−headl ine)))

12 Archiving

12.1 Archiving Subtrees

My archiving procedure has changed. I used to move entire subtrees to a
separate archive file for the project. Task subtrees in FILE.org get archived
to FILE.org_archive using the a y command in the agenda.

I still archive to the same archive file as before but now I archive any
done state todo task that is old enough to archive. Tasks to archive are
listed automatically at the end of my block agenda and these are guaranteed
to be old enough that I’ve already billed any time associated with these
tasks. This cleans up my project trees and removes the old tasks that are
no longer interesting. The archived tasks get extra property data created
during the archive procedure so that it is possible to reconstruct exactly
where the archived entry came from in the rare case where you want to
unarchive something.

My archive files are huge but so far I haven’t found a need to split them
by year (or decade) :)

Archivable tasks show up in the last section of my block agenda when
a new month starts. Any tasks that are done but have no timestamps this
month or last month (ie. they are over 30 days old) are available to archive.
Timestamps include closed dates, notes, clock data, etc - any active or inac-
tive timestamp in the task.

Archiving is trivial. Just mark all of the entries in the block agenda using
the m key and then archive them all to the appropriate place with B $. This
normally takes less than 5 minutes once a month.

12.2 Archive Setup

I not longer use an ARCHIVE property in my subtrees. Tasks can just archive
normally to the Archived Tasks heading in the archive file.

The following setting ensures that task states are untouched when they
are archived. This makes it possible to archive tasks that are not marked

56

DONE. By default tasks are archived under the heading * Archived Tasks
in the archive file.

(s e tq org−archive−mark−done n i l)
(s e tq org−archive− l ocat ion "%s_archive : : ∗ ␣Archived␣Tasks")

(defun bh/ skip−non−archivable−tasks ()
"Skip ␣ t r e e s ␣ that ␣ are ␣not␣ a v a i l a b l e ␣ f o r ␣ a r ch iv ing "
(l et ((next−headl ine (save−excurs ion (or (outl ine−next−heading) (point−max)))))

; ; Consider on ly t a s k s wi th done todo headings as a r c h i v a b l e cand ida t e s
(i f (member (org−get−todo−state) org−done−keywords)

(l et ∗ ((subtree−end (save−excurs ion (org−end−of−subtree t)))
(daynr (str ing−to− int (format−time−string "%d" (current−t ime))))
(a−month−ago (∗ 60 60 24 (+ daynr 1)))
(last−month (format−time−string "%Y−%m−" (time−subtract (current−t ime) (seconds−to−time a−month−ago))))
(this−month (format−time−string "%Y−%m−" (current−t ime)))
(subtree− i s−current (save−excurs ion

(forward− l ine 1)
(and (< (po int) subtree−end)

(re−search− forward (concat last−month " \\ | " this−month) subtree−end t)))))
(i f subtree− i s−current

next−headl ine ; Has a date in t h i s month or l a s t month , s k i p i t
n i l)) ; a v a i l a b l e to a rch i v e

(or next−headl ine (point−max)))))

12.3 Archive Tag - Hiding Information

The only time I set the ARCHIVE tag on a task is to prevent it from opening
by default because it has tons of information I don’t really need to look at
on a regular basis. I can open the task with C-TAB if I need to see the gory
details (like a huge table of data related to the task) but normally I don’t
need that information displayed.

12.4 When to Archive

Archiving monthly works well for me. I keep completed tasks around for at
least 30 days before archiving them. This keeps current clocking information
for the last 30 days out of the archives. This keeps my files that contribute
to the agenda fairly current (this month, and last month, and anything that
is unfinished). I only rarely visit tasks in the archive when I need to pull up
ancient history for something.

57

Archiving keeps my main working files clutter-free. If I ever need the
detail for the archived tasks they are available in the appropriate archive
file.

13 Publishing and Exporting

I don’t do a lot of publishing for other people but I do keep a set of pri-
vate client system documentation online. Most of this documentation is a
collection of notes exported to HTML.

Everything at http://doc.norang.ca/ is generated by publishing org-files.
This includes the index pages on this site.

Org-mode can export to a variety of publishing formats including (but
not limited to)

• ASCII (plain text - but not the original org-mode file)

• HTML

• LATEX

• Docbook which enables getting to lots of other formats like ODF, XML,
etc

• PDF via LATEX or Docbook

• iCal

I haven’t begun the scratch the surface of what org-mode is capable of
doing. My main use case for org-mode publishing is just to create HTML
documents for viewing online conveniently. Someday I’ll get time to try out
the other formats when I need them for something.

13.1 Org-babel Setup

Org-babel makes it easy to generate decent graphics using external packages
like ditaa, graphviz, PlantUML, and others.

The setup is really easy. ditaa is provided with the org-mode source.
You’ll have to install the graphviz and PlantUML packages on your system.

(s e tq org−ditaa−jar−path "~/ java /ditaa0_6b . j a r ")
(s e tq org−plantuml−jar−path "~/ java /plantuml . j a r ")

58

http://doc.norang.ca/

(add−hook ’ org−babel−after−execute−hook ’ org−display− in l ine− images ’append)

(org−babel−do−load−languages
(quote org−babel− load− languages)
(quote ((emacs− l isp . t)

(dot . t)
(d i taa . t)
(R . t)
(python . t)
(ruby . t)
(gnuplot . t)
(c l o j u r e . t)
(sh . t)
(l edg e r . t)
(org . t)
(plantuml . t)
(l a t e x . t))))

; Do not prompt to confirm eva l ua t i on
; This may be dangerous − make sure you understand the consequences
; o f s e t t i n g t h i s −− see the doc s t r i n g f o r d e t a i l s
(s e tq org−confirm−babel−evaluate n i l)

Now you just create a begin-src block for the appropriate tool, edit the
text, and build the pictures with C-c C-c. After evaluating the block results
are displayed. You can toggle display of inline images with C-c C-x C-v

I disable startup with inline images because when I access my org-files
from an SSH session without X this breaks (say from my Android phone) it
fails when trying to display the images on a non-X session. It’s much more
important for me to be able to access my org files from my Android phone
remotely than it is to see images on startup.

; ; Don ’ t enab l e t h i s because i t b reaks acces s to emacs from my Android phone
(s e tq org−startup−with− inl ine− images n i l)

13.2 Playing with ditaa

ditaa is a great tool for quickly generating graphics to convey ideas and
ditaa is distributed with org-mode! All of the graphics in this document are
automatically generated by org-mode using plain text source.

Artist mode makes it easy to create boxes and lines for ditaa graphics.

59

http://ditaa.sourceforge.net/

The source for a ditaa graphic looks like this in org-mode:

#+begin_src ditaa :file some_filename.png :cmdline -r -s 0.8
<context of ditaa source goes here>

#+end_src

Here’s an example without the #+begin_src and #+end_src lines.

+−−−−−−−−−−−+ +−−−−−−−−−+
| PLC | | |
| Network +<−−−−−−>+ PLC +<−−−=−−−−−−−−−+
| cRED | | c707 | |
+−−−−−−−−−−−+ +−−−−+−−−−+ |

^ |
| |
| +−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−+
| | |

|
v v v

v
+−−−−−−−−−−+ +−−−−+−−+−−+ +−−−−−−−+−−−+

+−−−−−+−−−−−+ Windows c l i e n t s
| | | | | |

| | +−−−−+ +−−−−+
| Database +<−−−−−>+ Shared +<−−−−>+ Execut ive +<−=−−>+ Operator

+<−−−−>|cYEL | . . . | cYEL |
| c707 | | Memory | | c707 |

| Server | | | | |
+−−+−−−−+−−+ |{ d} cGRE | +−−−−−−+−−−−+

| c707 | +−−−−+ +−−−−+
^ ^ +−−−−−−−−−−+ ^

+−−−−−−−+−−−+
| | |
| +−−−−−−−−=−−−−−−−−−−−−−−−−−−−−−−−−−−+
v

+−−−−−−−−+−−−−−−−−+
| |
| Mi l lwide System | −−−−−−−− Data −−−−−−−−−
| cBLU | −−=−−−−− S i gna l s −−−=−−
+−−−−−−−−−−−−−−−−−+

60

13.3 Playing with graphviz

Graphviz is another great tool for creating graphics in your documents.
The source for a graphviz graphic looks like this in org-mode:

#+begin_src dot :file some_filename.png :cmdline -Kdot -Tpng
<context of graphviz source goes here>

#+end_src

digraph G {
s i z e="8 ,6 "
r a t i o=expand
edge [d i r=both]
p l cne t [shape=box , l a b e l="PLC␣Network"]
subgraph c lu s t e r_wrap l ine {

l a b e l="Wrapline␣Control ␣System"
co l o r=purple
subgraph {
rank=same
exec
sharedmem [s t y l e=f i l l e d , f i l l c o l o r=l i gh tg r ey , shape=box]
}
edge [s t y l e=dotted , d i r=none]
exec −> opserve r
exec −> db
p lc −> exec
edge [s t y l e=l i n e , d i r=both]
exec −> sharedmem
sharedmem −> db
p lc −> sharedmem

61

http://www.graphviz.org/

sharedmem −> opserve r
}
p l cne t −> plc [c on s t r a i n t=f a l s e]
mi l lw ide [shape=box , l a b e l="Mil lwide ␣System"]
db −> mi l lw ide

subgraph c l u s t e r_op c l i e n t s {
c o l o r=blue
l a b e l="Operator ␣ C l i en t s "
rankd i r=LR
l a b e l l o c=b
node [l a b e l=c l i e n t]
opse rve r −> c l i e n t 1
opse rve r −> c l i e n t 2
opse rve r −> c l i e n t 3

}
}

The -Kdot is optional (defaults to dot) but you can substitute other
graphviz types instead here (ie. twopi, neato, circo, etc).

62

13.4 Playing with PlantUML

I have just started using PlantUML which is built on top of Graphviz. I’m
still experimenting with this but so far I like it a lot. The todo state change
diagrams in this document are created with PlantUML.

The source for a PlantUML graphic looks like this in org-mode:

#+begin_src plantuml :file somefile.png
<context of PlantUML source goes here>

#+end_src

13.4.1 Sequence Diagram

t i t l e Example Sequence Diagram
ac t i v a t e C l i en t
C l i en t −> Server : Se s s i on I n i t i a t i o n
note r i g h t : C l i en t r eque s t s new s e s s i o n
a c t i v a t e Server
C l i en t <−− Server : Author i zat ion Request
note l e f t : Server r e qu i r e s au then t i c a t i on
C l i en t −> Server : Author i zat ion Response
note r i g h t : C l i en t prov ides au then t i c a t i on d e t a i l s
Server −−> Cl i en t : Se s s i on Token
note l e f t : S e s s i on e s t ab l i s h ed
deac t i va t e Server
C l i en t −> Cl i en t : Saves token
deac t i va t e C l i en t

13.4.2 Activity Diagram

63

http://plantuml.sourceforge.net/
http://www.graphviz.org/

t i t l e Example Act i v i ty Diagram
note r i g h t : Example Function
(∗)−−> "Step␣1"
−−> "Step␣2"
−> "Step␣3"
−−> "Step␣4"
−−> === STARTLOOP ===
note top : For each element in the array
−−> i f "Are␣we␣done?" then

−> [no] "Do␣ t h i s "
−> "Do␣ that "
note bottom : Important note \ngoes here
−up−> "Increment ␣ counter s "
−−> === STARTLOOP ===

e l s e
−−> [yes] === ENDLOOP ===

end i f
−−> "Last ␣Step"
−−> (∗)

64

13.4.3 Usecase Diagram

LabUser −−> (Runs Simulat ion)
LabUser −−> (Analyses Resu l t s)

65

13.4.4 Object Diagram

Object1 <|−− Object2
Object1 : someVar
Object1 : execute ()
Object2 : g e tS ta t e ()
Object2 : s e t S t a t e ()
Object2 : s t a t e

66

13.4.5 State Diagram

67

[∗] −−> Star t
Star t −> State2
State2 −> State3
note r i g h t o f State3 : Notes can be\nattached to s t a t e s
State2 −−> State4
State4 −> Fin i sh
State3 −−> Fin i sh
F in i sh −−> [∗]

13.4.6 Publishing Single Files

Org-mode exports the current file to one of the standard formats by invoking
an export function. The standard key binding for this is C-c C-e followed
by the key for the type of export you want.

This works great for single files or parts of files – if you narrow the buffer
to only part of the org-mode file then you only get the narrowed detail in
the export.

13.5 Publishing Projects

I mainly use publishing for publishing multiple files or projects. I don’t want
to remember where the created export file needs to move to and org-mode

68

projects are a great solution to this.
The http://doc.norang.ca website (and a bunch of other files that are not

publicly available) are all created by editing org-mode files and publishing
the project the file is contained in. This is great for people like me who
want to figure out the details once and forget about it. I love stuff that Just
Works(tm).

I have 5 main projects I use org-mode publishing for currently:

• norang (website)

• doc.norang.ca (website, published documents)

• doc.norang.ca/private (website, non-published documents)

• www.norang.ca/tmp (temporary publishing site for testing org-mode
stuff)

• org files (which are selectively included by other websites)

Here’s my publishing setup:

; exper iment ing wi th docbook expor t s − not f i n i s h e d
(s e tq org−export−docbook−xsl−fo−proc−command " fop ␣%s␣%s")
(s e tq org−export−docbook−xslt−proc−command " x s l t p r o c ␣−−output␣%s␣/ usr / share /xml/docbook/ s t y l e s h e e t /nwalsh/ fo /docbook . x s l ␣%s ")
;
; I n l i n e images in HTML ins t ead o f produc t ing l i n k s to the image
(s e tq org−export−html− inline− images t)
; Do not use sub or s u p e r s c r i p t s − I c u r r en t l y don ’ t need t h i s f u n c t i o n a l i t y in my documents
(s e tq org−export−with−sub−superscripts n i l)
; Use org . c s s from the norang web s i t e f o r expor t document s t y l e s h e e t s
(s e tq org−export−html−style−extra "<l i n k ␣ r e l =\" s t y l e s h e e t \"␣ h r e f=\"http :// doc . norang . ca/ org . c s s \"␣ type=\"text / c s s \"␣/>")
(se tq org−export−html−style− include−default n i l)
; Do not genera te i n t e r n a l c s s f o rmat t ing f o r HTML expor t s
(s e tq org−export−htmlize−output−type (quote c s s))
; Export wi th LaTeX fragments
(s e tq org−export−with−LaTeX−fragments t)

; L i s t o f p r o j e c t s
; norang − h t t p ://www. norang . ca/
; doc − h t t p :// doc . norang . ca/
; org−mode−doc − h t t p :// doc . norang . ca/org−mode . html and a s s o c i a t e d f i l e s
; org − misce l l aneous todo l i s t s f o r p u b l i s h i n g

69

http://doc.norang.ca

(s e tq org−publ i sh−pro jec t−a l i s t
;
; h t t p ://www. norang . ca/ (norang web s i t e)
; norang−org are the o r g− f i l e s t h a t genera te the content
; norang−extra are images and cs s f i l e s t h a t need to be inc luded
; norang i s the t op− l e v e l p r o j e c t t h a t g e t s pu b l i s h e d
(quote (("norang−org"

: base−directory "~/ g i t /www. norang . ca"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/www. norang . ca/ htdocs "
: r e c u r s i v e t
: table−of−contents n i l
: base−extens ion " org "
: pub l i sh ing− funct ion org−publish−org−to−html
: s ty l e− i n c lude−de fau l t n i l
: section−numbers n i l
: table−of−contents n i l
: s t y l e "<l i n k ␣ r e l =\" s t y l e s h e e t \"␣ h r e f=\"norang . c s s \"␣ type=\"text / c s s \"␣/>"
: author− info n i l
: c r ea to r− i n f o n i l)

("norang−extra"
: base−directory "~/ g i t /www. norang . ca/"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/www. norang . ca/ htdocs "
: base−extens ion " c s s \\ | pdf \\ | png \\ | jpg \\ | g i f "
: pub l i sh ing− funct ion org−publish−attachment
: r e c u r s i v e t
: author n i l)

("norang"
: components ("norang−org" "norang−extra"))

;
; h t t p :// doc . norang . ca/ (norang web s i t e)
; doc−org are the o r g− f i l e s t h a t genera te the content
; doc−extra are images and cs s f i l e s t h a t need to be inc luded
; doc i s the t op− l e v e l p r o j e c t t h a t g e t s pu b l i s h e d
("doc−org"
: base−directory "~/ g i t /doc . norang . ca/"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/ doc . norang . ca/ htdocs "
: r e c u r s i v e n i l
: section−numbers n i l
: table−of−contents n i l
: base−extens ion " org "

70

: pub l i sh ing− funct ion (org−publish−org−to−html org−publish−org−to−org)
: s ty l e− i n c lude−de fau l t n i l
: s t y l e "<l i n k ␣ r e l =\" s t y l e s h e e t \"␣ h r e f=\"/org . c s s \"␣ type=\"text / c s s \"␣/>"
: author− info n i l
: c r ea to r− i n f o n i l)

("doc−extra"
: base−directory "~/ g i t /doc . norang . ca/"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/ doc . norang . ca/ htdocs "
: base−extens ion " c s s \\ | pdf \\ | png \\ | jpg \\ | g i f "
: pub l i sh ing− funct ion org−publish−attachment
: r e c u r s i v e n i l
: author n i l)

("doc"
: components ("doc−org" "doc−extra"))

("doc−private−org"
: base−directory "~/ g i t /doc . norang . ca/ p r i va t e "
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/ doc . norang . ca/ htdocs / p r i va t e "
: r e c u r s i v e n i l
: section−numbers n i l
: table−of−contents n i l
: base−extens ion " org "
: pub l i sh ing− funct ion (org−publish−org−to−html org−publish−org−to−org)
: s ty l e− i n c lude−de fau l t n i l
: s t y l e "<l i n k ␣ r e l =\" s t y l e s h e e t \"␣ h r e f=\"/org . c s s \"␣ type=\"text / c s s \"␣/>"
: auto−sitemap t
: s itemap− f i lename " index . html"
: s i t emap− t i t l e "Norang␣Pr ivate ␣Documents"
: s i temap−sty le " t r e e "
: author− info n i l
: c r ea to r− i n f o n i l)

(" doc−private−extra "
: base−directory "~/ g i t /doc . norang . ca/ p r i va t e "
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/ doc . norang . ca/ htdocs / p r i va t e "
: base−extens ion " c s s \\ | pdf \\ | png \\ | jpg \\ | g i f "
: pub l i sh ing− funct ion org−publish−attachment
: r e c u r s i v e n i l
: author n i l)

(" doc−private "
: components ("doc−private−org" "doc−private−extra "))

;

71

; Misce l l aneous pages f o r o ther we b s i t e s
; org are the o r g− f i l e s t h a t genera te the content
("org−org"
: base−directory "~/ g i t / org /"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/ org "
: r e c u r s i v e t
: section−numbers n i l
: table−of−contents n i l
: base−extens ion " org "
: pub l i sh ing− funct ion org−publish−org−to−html
: s ty l e− i n c lude−de fau l t n i l
: s t y l e "<l i n k ␣ r e l =\" s t y l e s h e e t \"␣ h r e f=\"/org . c s s \"␣ type=\"text / c s s \"␣/>"
: author− info n i l
: c r ea to r− i n f o n i l)

;
; h t t p :// doc . norang . ca/ (norang web s i t e)
; org−mode−doc−org t h i s document
; org−mode−doc−extra are images and cs s f i l e s t h a t need to be inc l uded
; org−mode−doc i s the t op− l e v e l p r o j e c t t h a t g e t s pu b l i s h e d
; This uses the same t a r g e t d i r e c t o r y as the ’ doc ’ p r o j e c t
("org−mode−doc−org"
: base−directory "~/ g i t /org−mode−doc/"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/ doc . norang . ca/ htdocs "
: r e c u r s i v e t
: section−numbers n i l
: table−of−contents n i l
: base−extens ion " org "
: pub l i sh ing− funct ion (org−publish−org−to−html org−publish−org−to−org)
: p la in−source t
: htmlized−source t
: s ty l e− i n c lude−de fau l t n i l
: s t y l e "<l i n k ␣ r e l =\" s t y l e s h e e t \"␣ h r e f=\"/org . c s s \"␣ type=\"text / c s s \"␣/>"
: author− info n i l
: c r ea to r− i n f o n i l)

("org−mode−doc−extra"
: base−directory "~/ g i t /org−mode−doc/"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/ doc . norang . ca/ htdocs "
: base−extens ion " c s s \\ | pdf \\ | png \\ | jpg \\ | g i f "
: pub l i sh ing− funct ion org−publish−attachment
: r e c u r s i v e t

72

: author n i l)
("org−mode−doc"
: components ("org−mode−doc−org" "org−mode−doc−extra"))

;
; h t t p :// doc . norang . ca/ (norang web s i t e)
; org−mode−doc−org t h i s document
; org−mode−doc−extra are images and cs s f i l e s t h a t need to be inc l uded
; org−mode−doc i s the t op− l e v e l p r o j e c t t h a t g e t s pu b l i s h e d
; This uses the same t a r g e t d i r e c t o r y as the ’ doc ’ p r o j e c t
("tmp−org"
: base−directory "/tmp/ pub l i sh /"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/www. norang . ca/ htdocs /tmp"
: r e c u r s i v e t
: section−numbers n i l
: table−of−contents n i l
: base−extens ion " org "
: pub l i sh ing− funct ion (org−publish−org−to−html org−publish−org−to−org)
: p la in−source t
: htmlized−source t
: s ty l e− i n c lude−de fau l t t
: auto−sitemap t
: s itemap− f i lename " index . html"
: s i t emap− t i t l e "Test ␣ Publ i sh ing ␣Area"
: s i temap−sty le " t r e e "
: author− info n i l
: c r ea to r− i n f o n i l)

("tmp−extra"
: base−directory "/tmp/ pub l i sh /"
: pub l i sh ing−d i r e c to ry "/ ssh :www−data@www:~/www. norang . ca/ htdocs /tmp"
: base−extens ion "png"
: pub l i sh ing− funct ion org−publish−attachment
: r e c u r s i v e t
: author n i l)

("tmp"
: components ("tmp−org" "tmp−extra")))))

; I ’m l a z y and don ’ t want to remember the name o f the p r o j e c t to p u b l i s h when I modify
; a f i l e t h a t i s par t o f a p r o j e c t . So t h i s f unc t i on saves the f i l e , and pu b l i s h e s
; the p r o j e c t t h a t i n c l u d e s t h i s f i l e
;

73

; I t ’ s bound to C−S−F12 so I j u s t e d i t and h i t C−S−F12 when I ’m done and move on to the next t h ing
(defun bh/ save−then−publish ()

(i n t e r a c t i v e)
(save−buf fer)
(org−save−al l−org−buffers)
(org−publ ish−current−project))

(global−set−key (kbd "C−s−<f12>") ’bh/ save−then−publish)

The main projects are norang, doc, doc-private, org-mode-doc, and
tmp. These projects publish directly to the webserver directory on a remote
web server that serves the site. Publishing one of these projects exports
all modified pages, generates images, and copies the resulting files to the
webserver so that they are immediately available for viewing.

The http://doc.norang.ca/ site contains subdirectories with client and
private documentation that are restricted by using Apache Basic authenti-
cation. I don’t create links to these sites from the publicly viewable pages.
http://doc.norang.ca/someclient/ would show the index for any org files un-
der ~/git/doc.norang.ca/someclient/ if that is set up as a viewable web-
site. I use most of the information myself but give access to clients if they
are interested in the information/notes that I keep about their systems.

This works great for me - I know where my notes are and I can access
them from anywhere on the internet. I’m also free to share notes with other
people by simply giving them the link to the appropriate site.

All I need to remember to do is edit the appropriate org file and publish
it with C-S-F12 – not exactly hard :)

Recently I added a temporary publishing site for testing exports and
validation. This is the tmp site which takes files from /tmp/publish and
exports those files to a website publishing directory. This makes it easy to
try new throw-away things on a live server.

13.6 Miscellaneous Export Settings

This is a collection of export and publishing related settings that I use.

13.6.1 Fontify Latex listings for source blocks

For export to latex I use the following setting to get fontified listings from
source blocks:

(s e tq org−export− l a tex− l i s t ings t)

74

http://doc.norang.ca/
http://doc.norang.ca/someclient/

13.6.2 Export HTML without XML header

I use the following setting to remove the xml header line for HTML exports.
This xml line was confusing Open Office when opening the HTML to convert
to ODT.

(se tq org−export−html−xml−declaration (quote (("html" . "")
("was−html" . "<?xml␣ ve r s i on =\"1.0\"␣ encoding=\"%s\"?>")
("php" . "<?php␣echo␣\"<?xml␣ ve r s i on =\\\"1.0\\\"␣ encoding=\\\"%s \\\"␣?>\";␣?>"))))

13.6.3 Allow binding variables on export without confirmation

The following setting allows #+BIND: variables to be set on export without
confirmation. In rare situations where I want to override some org-mode
variable for export this allows exporting the document without a prompt.

(s e tq org−export−allow−BIND t)

14 Reminders

I use appt for reminders. It’s simple and unobtrusive – putting pending
appointments in the status bar and beeping as 12, 9, 6, 3, and 0 minutes
before the appointment is due.

Everytime the agenda is displayed (and that’s lots for me) the appoint-
ment list is erased and rebuilt from the current agenda details for today.
This means everytime I reschedule something, add or remove tasks that are
time related the appointment list is automatically updated the next time I
look at the agenda.

14.1 Reminder Setup

; Erase a l l reminders and r e b u i l t reminders f o r today from the agenda
(defun bh/org−agenda−to−appt ()

(i n t e r a c t i v e)
(s e tq appt−time−msg−list n i l)
(org−agenda−to−appt))

; Rebui ld the reminders every t ime the agenda i s d i s p l a y ed
(add−hook ’ org− f inal ize−agenda−hook ’bh/org−agenda−to−appt ’append)

75

; This i s a t the end o f my . emacs − so appointments are s e t up when Emacs s t a r t s
(bh/org−agenda−to−appt)

; Ac t i va t e appointments so we ge t n o t i f i c a t i o n s
(appt−act ivate t)

; I f we l e a v e Emacs running ove rn i gh t − r e s e t the appointments one minute a f t e r midnight
(run−at−time " 24 :01 " n i l ’ bh/org−agenda−to−appt)

15 Productivity Tools

This section is a miscellaneous collection of Emacs customizations that I use
with org-mode so that it Works-For-Me(tm).

15.1 Yasnippet

Yasnippet is cool but I don’t use this anymore. I’ve replaced yasnippet with
a combination of abbrev-mode and skeletons which are available by default
in Emacs.

The following description applies to yasnippet version 0.5.10. The setup
requirements may have changed with newer versions.

You type the snippet name and TAB and yasnippet expands the name
with the contents of the snippet text - substituting snippet variables as
appropriate.

Yasnippet comes with lots of snippets for programming languages. I used
a few babel related snippets with org-mode.

I downloaded and installed the unbundled version of yasnippet so that I
can edit the predefined snippets. I unpacked the yasnippet software in my
~/.emacs.d/plugins directory, renamed yasnippet0.5.10 to yasnippet
and added the following setup in my .emacs:

(add−to− l ist ’ load−path (expand−file−name "~/. emacs . d/ p lug in s "))

(require ’ yasn ippet)
(yas / i n i t i a l i z e)
(yas / load−di rec tory "~/. emacs . d/ p lug in s / yasn ippet / sn ippe t s ")

; ; Make TAB the yas t r i g g e r key in the org−mode−hook and enab l e f l y s p e l l mode and a u t o f i l l
(add−hook ’ org−mode−hook

(lambda ()
; ; ya sn ippe t

76

http://code.google.com/p/yasnippet/

(make−variable−buffer− local ’ yas / tr igger−key)
(org−set− loca l ’ yas / tr igger−key [tab])
(def ine−key yas /keymap [tab] ’ yas / next− f ie ld−group)
; ; f l y s p e l l mode f o r s p e l l check ing everywhere
(f lyspe l l−mode 1)
; ; a u t o− f i l l mode on
(auto− f i l l−mode 1)))

I used snippets for the following:

• begin for generic #+begin_ blocks

• dot for graphviz

• uml for PlantUML graphics

• sh for bash shell scripts

• elisp for emacs lisp code

• initials of a person converts to their full name I used this while taking
meeting notes

Here is the definition for the begin snippet:
org-mode Yasnippet: ˜/.emacs.d/plugins/yasnippet/snippets/text-mode/org-

mode/begin

#name : #+begin_...#+end_
--
#+begin_$1 $2
$0
#+end_$1

I used this to create #+begin_* blocks like

• #+begin_example

• #+begin_src

• etc.

Simply type begin and then TAB it replaces the begin text with the
snippet contents. Then type src TAB emacs-lisp TAB and your snippet
block is done. I’ve shortened this specific sequence to just elisp TAB since
I use it fairly often. There is also the build-in org-mode <s in column 1 to

77

expand to #+begin_src ... #+end_src and <e for #+begin_example ...
#+end_example.

Hit C-c SingeQuote(’) and insert whatever emacs-lisp code you need.
While in this block you’re in a mode that knows how to format and colourize
emacs lisp code as you enter it which is really nice. C-c SingleQuote(’)
exits back to org-mode. This recognizes any emacs editing mode so all you
have to do is enter the appropriate mode name for the block.

dot

#dot : #+begin_src dot ... #+end_src
--
#+begin_src dot :file $1 :cmdline -Kdot -Tpng
$0
#+end_src

uml

#uml : #+begin_src plantuml ... #+end_src
--
#+begin_src plantuml :file $1
$0
#+end_src

sh

#sh: #+begin_src sh ... #+end_src
--
#+begin_src sh :results output
$0
#+end_src

elisp

#elisp : #+begin_src emacs-lisp ...#+end_src emacs-lisp
--
#+begin_src emacs-lisp
$0
#+end_src

This is a great time saver.

15.2 Abbrev-mode and Skeletons

Description coming soon. My basic setup came from the Worg FAQ about
shortcuts.

78

http://orgmode.org/worg/org-faq.html#shortcuts-for-entering-source-blocks
http://orgmode.org/worg/org-faq.html#shortcuts-for-entering-source-blocks

15.3 Limit your view to what you are working on

There is more than one way to do this. Use what works for you.

15.3.1 Narrowing to a subtree with bh/org-todo

f5 and S-f5 are bound the functions for narrowing and widening the emacs
buffer as follows:

(global−set−key (kbd "<f5>") ’bh/org−todo)

(defun bh/org−todo ()
(i n t e r a c t i v e)
(widen)
(org−narrow−to−subtree)
(org−show−todo−tree n i l))

(global−set−key (kbd "<S−f5>") ’bh/widen)

(defun bh/widen ()
(i n t e r a c t i v e)
(widen)
(org−revea l))

This makes it easy to hide all of the other details in your org-file tem-
porarily by limiting your view to this task subtree. Tasks are folded and
hilighted so that only tasks which are incomplete are shown.

I hit f5 a lot. This basically does a org-narrow-to-subtree and C-c
C-v combination leaving the buffer in a narrowed state. I use S-f5 to widen
back to the normal view.

I also have the following setting to force showing the next headline.

(s e tq org−show−entry−below (quote ((d e f au l t))))

This prevents too many headlines from being folded together when I’m
working with collapsed trees.

15.3.2 Limiting the agenda to a subtree

C-c C-x < turns on the agenda restriction lock for the current subtree. This
keeps your agenda focused on only this subtree. Alarms and notifications are
still active outside the agenda restriction. C-c C-x > turns off the agenda
restriction lock returning your agenda view back to normal.

79

15.3.3 Limiting the agenda to a file

You can limit the agenda view to a single file in multiple ways.
You can use the agenda restriction lock C-c C-x < on the any line before

the first heading to set the agenda restriction lock to this file only. This is
equivalent using a prefix argumment (C-u C-c C-x <) anywhere in the file.
This lock stays in effect until you remove it with C-c C-x >.

Another way is to invoke the agenda with F12 < a while visiting an org-
mode file. This limits the agenda view to just this file. I occasionally use
this to view a file not in my org-agenda-files in the agenda.

15.4 Tuning the Agenda Views

Various customizations affect how the agenda views show task details. This
section shows each of the customizations I use in my workflow.

15.4.1 Highlight the current agenda line

The following code in my .emacs file keeps the current agenda line high-
lighted. This makes it obvious what task will be affected by commands
issued in the agenda. No more acting on the wrong task by mistake!

The clock modeline time is also shown with a reverse background.

; ; Always h i l i g h t the curren t agenda l i n e
(add−hook ’ org−agenda−mode−hook ’ (lambda () (hl−line−mode 1)) ’append)

; ; The f o l l ow i n g custom−set− faces c r ea t e the h i g h l i g h t s
(custom−set− faces

; ; custom−set− faces was added by Custom .
; ; I f you e d i t i t by hand , you cou ld mess i t up , so be c a r e f u l .
; ; Your i n i t f i l e shou ld conta in on ly one such in s tance .
; ; I f t h e r e i s more than one , they won ’ t work r i g h t .
’ (h i g h l i g h t ((t (: background "cyan"))))
’ (h l− l i ne ((t (: i n h e r i t h i g h l i g h t : background " darkseagreen2 "))))
’ (org−mode−line−clock ((t (: background " grey75 " : foreground " red " : box (: l ine−width −1 : s t y l e re leased−button)))) t))

15.4.2 Keep tasks with timestamps visible on the global todo lists

Tasks with dates (SCHEDULED:, DEADLINE:, or active dates) show up
in the agenda when appropriate. The block agenda view (F12 a) tries to

keep tasks showing up only in one location (either in the calendar or other

80

todo lists in later sections of the block agenda.) I now rarely use the global
todo list search in org-mode (F12 t, F12 m) and when I do I’m trying to
find a specific task quickly. These lists now include everything so I can just
search for the item I want and move on.

The block agenda prevents display of tasks with deadlines or scheduled
dates in the future so you can safely ignore these until the appropriate time.

; ; Keep t a s k s wi th da te s on the g l o b a l todo l i s t s
(s e tq org−agenda−todo−ignore−with−date n i l)

; ; Keep t a s k s wi th d ead l i n e s on the g l o b a l todo l i s t s
(s e tq org−agenda−todo− ignore−deadlines n i l)

; ; Keep t a s k s wi th schedu l ed da te s on the g l o b a l todo l i s t s
(s e tq org−agenda−todo− ignore−scheduled n i l)

; ; Keep t a s k s wi th timestamps on the g l o b a l todo l i s t s
(s e tq org−agenda−todo−ignore−timestamp n i l)

; ; Remove completed dead l i n e t a s k s from the agenda view
(s e tq org−agenda−skip−deadline− if−done t)

; ; Remove completed schedu l ed t a s k s from the agenda view
(s e tq org−agenda−skip−scheduled−if−done t)

; ; Remove completed i tems from search r e s u l t s
(s e tq org−agenda−skip−timestamp−if−done t)

15.4.3 Use the Diary for Holidays and Appointments

I don’t use the emacs Diary for anything but I like seeing the holidays on my
agenda. This helps with planning for those days when you’re not supposed
to be working.

(s e tq org−agenda− include−diary n i l)
(s e tq org−agenda−diary− f i le "~/ g i t / org / d iary . org ")

The diary file keeps date-tree entries created by the capture mode ‘ap-
pointment’ template. I use this also for miscellaneous tasks I want to clock
during interruptions.

I don’t use a ~/diary file anymore. That is just there as a zero-
length file to keep Emacs happy. I use org-mode’s diary functions instead.

81

Inserting entries with i in the emacs agenda creates date entries in the
~/git/org/diary.org file.

I include holidays from the calendar in my todo.org file as follows:

#+FILETAGS: PERSONAL
* Appointments

:PROPERTIES:
:CATEGORY: Appt
:ARCHIVE: %s_archive::* Appointments
:END:

** Holidays
:PROPERTIES:
:Category: Holiday
:END:

%%(org-calendar-holiday)
** Some other Appointment

...

I use the following setting so any time strings in the heading are shown
in the agenda.

(s e tq org−agenda− insert−diary−extract−time t)

15.4.4 Searches include archive files

I keep a single archive file for each of my org-mode project files. This allows
me to search the current file and the archive when I need to dig up old
information from the archives.

I don’t need this often but it sure is handy on the occasions that I do
need it.

; ; Inc lude agenda arch i v e f i l e s when search ing f o r t h i n g s
(s e tq org−agenda−text−search−extra− f i les (quote (agenda−archives)))

15.4.5 Agenda view tweaks

The following agenda customizations control

• display of repeating tasks

• display of empty dates on the agenda

• task sort order

82

• start the agenda weekly view with today

• display of the grid

• habits at the bottom

I use a custom sorting function so that my daily agenda lists tasks in
order of importance. Tasks on the daily agenda are listed in the following
order:

1. tasks with times at the top so they are hard to miss

2. entries for today (active timestamp headlines that are not scheduled
or deadline tasks)

3. deadlines due today

4. late deadline tasks

5. scheduled items for today

6. pending deadlines (due soon)

7. late scheduled items

8. habits

The lisp for this isn’t particularly pretty but it works.
Here are the .emacs settings:

; ; Show a l l f u t u r e e n t r i e s f o r r epea t in g t a s k s
(s e tq org−agenda−repeating−timestamp−show−all t)

; ; Show a l l agenda da te s − even i f they are empty
(s e tq org−agenda−show−all−dates t)

; ; Sor t ing order f o r t a s k s on the agenda
(s e tq org−agenda−sorting−strategy

(quote ((agenda habit−down time−up user−defined−up priority−down ef fort−up category−keep)
(todo category−up priority−down ef fort−up)
(tags category−up priority−down ef fort−up)
(search category−up))))

; ; S t a r t the week ly agenda today

83

(s e tq org−agenda−start−on−weekday n i l)

; ; Enable d i s p l a y o f the time g r i d so we can see the marker f o r the curren t time
(s e tq org−agenda−time−grid (quote ((da i l y today remove−match)

#("−−−−−−−−−−−−−−−−" 0 16
(org−heading t))

(800 1000 1200 1400 1600 1800 2000))))

; ; Disp lay t a g s f a r t h e r r i g h t
(s e tq org−agenda−tags−column −102)

; ;
; ; Agenda s o r t i n g f unc t i on s
; ;
(s e tq org−agenda−cmp−user−defined ’bh/agenda−sort)

(defun bh/agenda−sort (a b)
" Sor t ing ␣ s t r a t e gy ␣ f o r ␣agenda␣ items .

Late␣ dead l i n e s ␣ f i r s t , ␣ then␣ scheduled , ␣ then␣non− late ␣ dead l i n e s "
(l et (r e s u l t num−a num−b)

(cond
; t ime s p e c i f i c i tems are a l r eady so r t ed f i r s t by org−agenda−sort ing−strategy

; non−deadline and non−scheduled i tems next
((bh/agenda−sort−test ’ bh/ is−not−scheduled−or−deadline a b))

; d e ad l i n e s f o r today next
((bh/agenda−sort−test ’ bh/ is−due−deadline a b))

; l a t e d ead l i n e s next
((bh/agenda−sort−test−num ’bh/ i s− l a t e−dead l ine ’< a b))

; s chedu l ed i tems f o r today next
((bh/agenda−sort−test ’ bh/ is−scheduled−today a b))

; pending dead l i n e s l a s t
((bh/agenda−sort−test−num ’bh/ is−pending−deadl ine ’< a b))

; l a t e schedu l ed i tems next
((bh/agenda−sort−test−num ’bh/ is−scheduled− l a te ’> a b))

84

; f i n a l l y d e f a u l t to unsorted
(t (s e tq r e s u l t n i l)))

r e s u l t))

(defmacro bh/agenda−sort−test (fn a b)
"Test ␣ f o r ␣agenda␣ s o r t "
‘ (cond

; i f bo th match l e a v e them unsorted
((and (apply , fn (l i s t , a))

(apply , fn (l i s t , b)))
(s e tq r e s u l t n i l))

; i f a matches put a f i r s t
((apply , fn (l i s t , a))
(s e tq r e s u l t −1))

; o t he rw i s e i f b matches put b f i r s t
((apply , fn (l i s t , b))
(s e tq r e s u l t 1))

; i f none match l e a v e them unsorted
(t n i l)))

(defmacro bh/agenda−sort−test−num (fn compfn a b)
‘ (cond

((apply , fn (l i s t , a))
(s e tq num−a (string−to−number (match−string 1 , a)))
(i f (apply , fn (l i s t , b))

(progn
(se tq num−b (string−to−number (match−string 1 ,b)))
(s e tq r e s u l t (i f (apply , compfn (l i s t num−a num−b))

−1
1)))

(s e tq r e s u l t −1)))
((apply , fn (l i s t , b))
(s e tq r e s u l t 1))

(t n i l)))

(defun bh/ is−not−scheduled−or−deadline (date−str)
(and (not (bh/ i s−dead l ine date−str))

(not (bh/ is−scheduled date−str))))

85

(defun bh/ is−due−deadline (date−str)
(string−match "\ t e x t t t {Deadl ine : } " date−str))

(defun bh/ i s− l a t e−dead l ine (date−str)
(string−match " In␣ ∗\\(− .∗\\)d \ . : " date−str))

(defun bh/ is−pending−deadl ine (date−str)
(string−match " In␣ \\([^−]∗\\)d \ . : " date−str))

(defun bh/ i s−dead l ine (date−str)
(or (bh/ is−due−deadline date−str)

(bh/ i s− l a t e−dead l ine date−str)
(bh/ is−pending−deadl ine date−str)))

(defun bh/ is−scheduled (date−str)
(or (bh/ is−scheduled−today date−str)

(bh/ is−scheduled− l a te date−str)))

(defun bh/ is−scheduled−today (date−str)
(string−match "\ t e x t t t {Scheduled : } " date−str))

(defun bh/ is−scheduled− l a te (date−str)
(string−match "Sched \ . \ \ (. ∗ \ \) x : " date−str))

15.5 Checklist handling

Checklists are great for repeated tasks with lots of things that need to be
done. For a long time I was manually resetting the check boxes to unchecked
when marking the repeated task DONE but no more! There’s a contributed
org-checklist that can uncheck the boxes automagically when the task is
marked done.

Add the following to your .emacs

(add−to− l ist ’ load−path (expand−file−name "~/ g i t /org−mode/ cont r ib / l i s p "))

(require ’ o r g− check l i s t)

and then to use it in a task you simply set the property RESET_CHECK_BOXES
to t like this

** TODO Invoicing and Archive Tasks [0/7]

86

\texttt{DEADLINE:} <2009-07-01 Wed +1m -0d>

:PROPERTIES:
:RESET_CHECK_BOXES: t
:END:

- [] Do task 1
- [] Do task 2
...
- [] Do task 7

15.6 Backups

Backups that you have to work hard at don’t get gone.
I lost a bunch of data over 10 years ago due to not having a work-

ing backup solution. At the time I said I’m not going to lose any
important data ever again. So far so good :)

My backups get done religiously. What does this have to do with org-
mode? Not much really, other than I don’t spend time doing backups – they
just happen – which saves me time for other more interesting things.

My backup philosophy is to make it possible to recover your data – not
necessarily easy. It doesn’t have to be easy/fast to do the recovery because
I’ll rarely have to recover data from the backups. Saving time for recovery
doesn’t make sense to me. I want the backup to be fast and painless since I
do those all the time.

I set up an automated network backup over 10 years ago that is still
serving me well today. All of my systems gets daily backups to a network
drive. These are collected monthly and written to an external removable
USB disk.

Once a month my task for backups prompts me to move the current
collection of montly backups to the USB drive for external storage. Backups
take minimal effort currently and I’m really happy about that.

Since then git came into my life, so backups of git repositories that are
on multiple machines is much less critical than it used to be. There is an
automatic backup of everything pushed to the remote repository.

15.7 Handling blocked tasks

Blocked tasks are tasks that have subtasks which are not in a done todo
state. Blocked tasks show up in a grayed font by default in the agenda.

To enable task blocking set the following variable:

87

(s e tq org−enforce−todo−dependencies t)

This setting prevents tasks from changing to DONE if any subtasks are still
open. This works pretty well except for repeating tasks. I find I’m regularly
adding TODO tasks under repeating tasks and not all of the subtasks need to
be complete before the next repeat cycle.

You can override the setting temporarily by changing the task with C-u
C-u C-u C-c C-t but I never remember that. I set a permanent property
on the repeated tasks as follows:

* TODO New Repeating Task
\texttt{SCHEDULED:} <2009-06-16 Tue +1w>

:PROPERTIES:
:NOBLOCKING: t
:END:

...
** TODO Subtask

This prevents the New Repeating Task from being blocked if some of
the items under it are not complete.

Occassionally I need to complete tasks in a given order. Org-mode has a
property ORDERED that enforces this for subtasks.

* TODO Some Task
:PROPERTY:
:ORDERED: t
:END:

** TODO Step 1
** TODO Step 2
** TODO Step 3

In this case you need to complete Step 1 before you can complete Step
2, etc. and org-mode prevents the state change to a done task until the
preceding tasks are complete.

15.8 Org Task structure and presentation

This section describes various org-mode settings I use to control how tasks
are displayed while I work on my org mode files.

88

15.8.1 Controlling display of leading stars on headlines

Org-mode has the ability to show or hide the leading stars on task headlines.
It’s also possible to have headlines at odd levels only so that the stars and
heading task names line up in sublevels.

I don’t hide leading stars - I want to see the heading levels explicitly.
When I tried the hide leading stars setting I found myself typing ‘ *’ when
adding a new heading and then the font lock shows I messed up and created
a list instead.

To make org show leading stars use

(s e tq org−hide− leading−stars n i l)

15.8.2 org-indent mode

I recently started using org-indent mode. I like this setting a lot. It removes
the indentation in the org-file but displays it as if it was indented while you
are working on the org file buffer.

org-indent mode displays as if org-odd-levels-only is true but it has a
really clean look that I prefer over my old setup.

I have org-indent mode on by default at startup with the following setting:

(s e tq org−startup− indented t)

15.8.3 Show headings at odd levels only or odd-even levels

I’ve converted my files between odd-levels-only and odd-even using the func-
tions org-convert-to-odd-levels and org-convert-to-oddeven-levels
functions a number of times. I ended up going back to odd-even levels to
reduce the amount of leading whitespace on tasks. I didn’t find that lining
up the headlines and tasks in odd-levels-only to be all that helpful.

(s e tq org−odd− levels−only n i l)

15.8.4 Handling blank lines

Blank lines are evil :). They keep getting inserted in between headlines
and I don’t want to see them in collapsed (contents) views. When I use
TAB to fold (cycle) tasks I don’t want to see any blank lines but the de-
fault org-cycle-separate-lines setting hides single blank lines and reveals
where extra empty lines are created in the document. This gives me an easy
way to identify and eradicate these evil blank lines.

89

The following setting hides single blank lines inside folded contents of a
tasks:

(s e tq org−cyc le− separator− l ines 2)

I find extra blank lines in lists and headings a bit of a nuisance. To get
a body after a list you need to include a blank line between the list entry
and the body – and indent the body appropriately. Most of my lists have no
body detail so I like the look of collapsed lists with no blank lines better.

The following setting prevents creating blank lines before list items and
headings:

(s e tq org−blank−before−new−entry (quote ((heading)
(p la in− l i s t− i t em))))

15.8.5 Adding new tasks quickly without disturbing the current
task content

To create new headings in a project file it is really convenient to use C-RET,
C-S-RET, M-RET, and M-S-RET. This inserts a new headline possibly with a
TODO keyword. With the following setting

(s e tq org− insert−heading−respect−content n i l)

org inserts the heading at point for the M- versions and respects content
for the C- versions. The respect content setting is temporarily turned on for
the C- versions which adds the new heading after the content of the current
item. This lets you hit C-S-RET in the middle of an entry and the new
heading is added after the body of the current entry but still allow you to
split an entry in the middle with M-S-RET.

15.8.6 Notes at the top

I enter notes for tasks with C-c C-z (or just z in the agenda). Changing tasks
states also sometimes prompt for a note (e.g. moving to WAITING prompts
for a note and I enter a reason for why it is waiting). These notes are saved
at the top of the task so unfolding the task shows the note first.

(s e tq org−reverse−note−order n i l)

90

15.8.7 Searching and showing results

Org-mode’s searching capabilities are really effective at finding data in your
org files. C-c / / does a regular expression search on the current file and
shows matching results in a collapsed view of the org-file.

I have org-mode show the hierarchy of tasks above the matched entries
and also the immediately following sibling task (but not all siblings) with
the following settings:

(s e tq org−show−following−heading t)
(s e tq org−show−hierarchy−above t)
(s e tq org−show−s ibl ings n i l)

This keeps the results of the search relatively compact and mitigates
accidental errors by cutting too much data from your org file with C-k.
Cutting folded data (including the . . .) can be really dangerous since it cuts
text (including following subtrees) which you can’t see. For this reason I
always show the following headline when displaying search results.

15.8.8 Editing and Special key handling

Org-mode allows special handling of the C-a, C-e, and C-k keys while editing
headlines. I also use the setting that pastes (yanks) subtrees and adjusts
the levels to match the task I am pasting to. See the docstring (C-h v
org-yank-adjust-subtrees) for more details on each variable and what it
does.

I have org-special-ctrl-a/e reversed because most of the time I want
to get to the beginning of the headline so the speed commands work and
this still allows easy access to the beginning of the heading text when I need
that.

(s e tq org−spec ia l−ctr l−a /e ’ r eve r s ed)
(s e tq org−spec ia l−ctr l−k t)
(s e tq org−yank−adjusted−subtrees t)

15.9 Attachments

Attachments are great for getting large amounts of data related to your
project out of your org-mode files. Before attachments came along I was
including huge blocks of SQL code in my org files to keep track of changes I
made to project databases. This bloated my org file sizes badly.

91

Now I can create the data in a separate file and attach it to my project
task so it’s easily located again in the future.

I set up org-mode to generate unique attachment IDs with org-id-method
as follows:

(s e tq org−id−method (quote uuidgen))

Say you want to attach a file x.sql to your current task. Create the file
data in /tmp/x.sql and save it.

Attach the file with C-c C-a a and enter the filename: x.sql. This gen-
erates a unique ID for the task and adds the file in the attachment directory.

** Attachments :ATTACH:
:PROPERTIES:
:Attachments: x.sql
:ID: f1d38e9a-ff70-4cc4-ab50-e8b58b2aaa7b
:END:

The attached file is saved in data/f1/d38e9a-ff70-4cc4-ab50-e8b58b2aaa7b/.
Where it goes exactly isn’t important for me – as long as it is saved and
retrievable easily. Org-mode copies the original file /tmp/x.sql into the
appropriate attachment directory.

Tasks with attachments automatically get an ATTACH tag so you can easily
find tasks with attachments with a tag search.

To open the attachment for a task use C-c C-a o. This prompts for the
attachment to open and TAB completion works here.

The ID changes for every task header when a new ID is generated.
It’s possible to use named directories for attachments but I haven’t

needed this functionality yet – it’s there if you need it.
I store my org-mode attachments with my org files in a subdirectory

data. These are automatically added to my git repository along with any
other org-mode changes I’ve made.

15.10 Deadlines and Agenda Visibility

Deadlines and due dates are a fact or life. By default I want to see deadlines
in the agenda 30 days before the due date.

The following setting accomplishes this:

(s e tq org−deadline−warning−days 30)

This gives me plenty of time to deal with the task so that it is completed
on or before the due date.

92

I also use deadlines for repeating tasks. If the task repeats more often
than once per month it would be always bugging me on the agenda view.
For these types of tasks I set an explicit deadline warning date as follows:

** TODO Pay Wages
\texttt{DEADLINE:} <2009-07-01 Wed +1m -0d>

This example repeats monthly and shows up in the agenda on the day
it is due (with no prior warning). You can set any number of lead days you
want on DEADLINES using -Nd where N is the number of days in advance
the task should show up in the agenda. If no value is specified the default
org-deadline-warning-days is used.

15.11 Exporting Tables to CSV

I generate org-mode tables with details of task specifications and record
structures for some of my projects. My clients like to use spreadsheets for
this type of detail.

It’s easy to share the details of the org-mode table by exporting in HTML
but that isn’t easy for anyone else to work with if they need to edit data.

To solve this problem I export my table as comma delimited values (CSV)
and then send that to the client (or read it into a spreadsheet and email the
resulting spreadsheet file).

Org-mode can export tables as TAB or comma delimited formats. I set
the default format to CSV with:

(s e tq org−table−export−default− format "orgtbl−to−csv ")

Exporting to CSV format is the only one I use and this provides the
default so I can just hit RETURN when prompted for the format.

To export the following table I put the cursor inside the table and hit
M-x org-table-export which prompts for a filename and the format which
defaults to orgtbl-to-csv from the setting above.

One Two Three
1 1 2
3 6 5

fred kpe mary
234.5 432.12 324.3

This creates the file with the following data

93

One ,Two, Three
1 ,1 ,2
3 ,6 ,5
f red , kpe , mary
234 . 5 , 432 . 12 , 324 . 3

15.12 Visiting links

Links to emails, web pages, and other files are sprinkled all over my org files.
The following setting control how org-mode handles opening the link.

(s e tq org− l ink−frame−setup ((vm . vm−vis it− fo lder)
(gnus . org−gnus−no−new−news)
(f i l e . f ind− f i le−other−window)))

I like to keep links in the same window so that I don’t end up with a ton
of frames in my window manager. I normally work in a full-screen window
and having links open in the same window just works better for me.

15.13 Logging stuff

Most of my logging is controlled by the global org-todo-keywords
My logging settings are set as follows:

(s e tq org−log−done (quote time))
(s e tq org−log−into−drawer t)

My org-todo-keywords are set as follows:

(s e tq org−todo−keywords (quote ((sequence "TODO(t) " "NEXT(n) " " | " "DONE(d ! / !) ")
(sequence "WAITING(w@/ !) " "SOMEDAY(s !) " " | " "CANCELLED(c@/ !) " "PHONE")
(sequence "OPEN(O!) " " | " "CLOSED(C!) "))))

This adds a log entry whenever a task moves to any of the following
states:

• to or out of DONE status

• to WAITING status (with a note) or out of WAITING status

• to SOMEDAY status

• to CANCELLED status (with a note) or out of CANCELLED status

• to OPEN status

94

• to CLOSED status

I keep clock times and states in the LOGBOOK drawer to keep my tasks
uncluttered. If a task is WAITING then the reason for why it is waiting
is near the top of the LOGBOOK and unfolding the LOGBOOK drawer
provides that information. From the agenda simply hitting SPC on the task
will reveal the LOGBOOK drawer.

15.14 Limiting time spent on tasks

Org-mode has this great new feature for signalling alarms when the estimated
time for a task is reached. I use this to limit the amount of time I spend on
a task during the day.

As an example, I’ve been working on this document for over two months
now. I want to get it finished but I can’t just work on it solely until it’s done
because then nothing else gets done. I want to do a little bit every day but
limit the total amount of time I spend documenting org-mode to an hour a
day.

To this end I have a task

** NEXT Document my use of org-mode
:LOGBOOK:...
:PROPERTIES:
:CLOCK_MODELINE_TOTAL: today
:Effort: 1:00
:END:

The task has an estimated effort of 1 hour and when I clock in the task
it gives me a total in the mode-line like this

--:** org-mode.org 91% (2348,73) Git:master (Org Fly yas Font)-----[0:35/1:00 (Document my use of org-mode)]-------

I’ve spent 35 minutes of my 1 hour so far today on this document and
other help on IRC.

I set up an alarm so the Star Trek door chime goes off when the total
estimated time is hit. (Yes I’m a Trekkie :))

(s e tq org−clock−sound "/ usr / l o c a l / l i b / tngchime . wav")

When the one hour time limit is hit the alarm sound goes off and a
message states that I should be done working on this task. If I switch tasks
and try to clock in this task again I get the sound each and every time I
clock in the task. This nags me to go work on something else :)

95

You can use similar setups for repeated tasks. By default the last repeat
time is recorded as a property when a repeating task is marked done. For
repeating tasks the mode-line clock total counts since the last repeat time
by default. This lets you accumulate time over multiple days and counts
towards your estimated effort limit.

15.15 Habit Tracking

John Wiegley recently added support for Habit tracking to org-mode.
I have lots of habits (some bad) but I’d still like to improve and build

new good habits. This is what habit tracking is for. It shows a graph on the
agenda of how well you have been doing on developing your habits.

I have habits like:

• Hand wash the dishes

• 30 minute brisk walk

• Clean the house

etc. and most of these need a push to get done regularly. Logging of the
done state needs to be enabled for habit tracking to work.

A habit is just like a regular task except it has a special PROPERTY value
setting and a special SCHEDULED date entry like this:

** TODO Update Org Mode Doc
\texttt{SCHEDULED:} <2009-11-21 Sat .+7d/30d>

[2009-11-14 Sat 11:45]
:PROPERTIES:
:STYLE: habit
:END:

This marks the task as a habit and separates it from the regular task
display on the agenda. When you mark a habit done it shows up on your
daily agenda the next time based on the first interval in the SCHEDULED
entry (.+7d)

The special SCHEDULED entry states that I want to do this every day but
at least every 2 days. If I go 3 days without marking it DONE it shows up
RED on the agenda indicating that I have been neglecting this habit.

The world isn’t going to end if you neglect your habits. You can hide
and display habits quickly using the K key on the agenda.

These are my settings for habit tracking.

96

; Enable h a b i t t r a c k i n g (and a bunch o f o ther modules)
(s e tq org−modules (quote (org−bbdb

org−bibtex
org−crypt
org−gnus
org− id
org− in fo
o rg− j s i n f o
org−habit
o rg− i n l i n e ta sk
org− i rc
org−mew
org−mhe
org−protocol
org−rmail
org−vm
org−wl
org−w3m)))

; g l o b a l STYLE proper ty va l u e s f o r comple t ion
(s e tq org−g loba l−propert i e s (quote (("STYLE_ALL" . " habi t "))))
; p o s i t i o n the ha b i t graph on the agenda to the r i g h t o f the d e f a u l t
(s e tq org−habit−graph−column 50)

During the day I’ll turn off the habit display in the agenda with K. This
is a persistent setting and since I leave my Emacs running for days at a time
my habit display doesn’t come back. To make sure I look at the habits daily
I have the following settings to redisplay the habits in the agenda each day.
This turns the habit display on again at 6AM each morning.

(run−at−time " 06 :00 " 86400 ’ (lambda () (s e tq org−habit−show−habits t)))

15.16 Habits only log DONE state changes

I tend to keep habits under a level 1 task * Habits with a special logging
property that only logs changes to the DONE state. This allows me to cancel
a habit and not record a timestamp for it since that messes up the habit
graph. Cancelling a habit just to get it off my agenda because it’s undoable
(like get up before 6AM) should not mark the habit as done today. I only
cancel habits that repeat every day.

97

My habit tasks look as follows - and I tend to have one in every org file
that can have habits defined

* Habits
:PROPERTIES:
:LOGGING: DONE(!)
:ARCHIVE: %s_archive::* Habits
:END:

15.17 Auto revert mode

I use git to synchronize my org-mode files between my laptop and my work-
station. This normally requires saving all the current changes, pushing to a
bare repo, and fetching on the other system. After that I need to revert all
of my org-mode files to get the updated information.

I used to use org-revert-all-org-buffers but have since discovered
global-auto-revert-mode. With this setting any files that change on disk
where there are no changes in the buffer automatically revert to the on-disk
version.

This is perfect for synchronizing my org-mode files between systems.

(s e tq global−auto−revert−mode t)

15.18 Handling Encryption

I used to keep my encrypted data like account passwords in a separate GPG
encrypted file. Now I keep them in my org-mode files with a special tag
instead. Encrypted data is kept in the org-mode file that it is associated
with.

org-crypt allows you to tag headings with a special tag crypt and org-
mode can keep data in these headings encrypted when saved to disk. You
decrypt the heading temporarily when you need access to the data and org-
mode re-encrypts the heading as soon as you save the file.

I use the following setup for encryption:

(require ’ org−crypt)
; Encrypt a l l e n t r i e s b e f o r e sav ing
(org−crypt−use−before−save−magic)
(s e tq org−tags−exclude− from− inheritance (quote (" crypt ")))
; GPG key to use f o r encryp t ion
(s e tq org−crypt−key "F0B66B40")

98

M-x org-decrypt-entry will prompt for the passphrase associated with
your encryption key and replace the encrypted data where the point is with
the plaintext details for your encrypted entry. As soon as you save the file
the data is re-encrypted for your key. Encrypting does not require prompting
for the passphrase - that’s only for looking at the plain text version of the
data.

I tend to have a single level 1 encrypted entry per file (like * Passwords).
I prevent the crypt tag from using inheritance so that I don’t have encrypted
data inside encrypted data. I found M-x org-decrypt-entries prompting
for the passphrase to decrypt data over and over again (once per entry to
decrypt) too inconvenient.

I leave my entries encrypted unless I have to look up data - I decrypt on
demand and then save the file again to re-encrypt the data. This keeps the
data in plain text as short as possible.

15.18.1 Auto Save Files

Emacs temporarily saves your buffer in an autosave file while you are editing
your org buffer and a sufficient number of changes have accumulated. If you
have decrypted subtrees in your buffer these will be written to disk in plain
text which possibly leaks sensitive information. To combat this org-mode
now asks if you want to disable the autosave functionality in this buffer.

Personally I really like the autosave feature. 99% of the time my en-
crypted entries are perfectly safe to write to the autosave file since they are
still encrypted. I tend to decrypt an entry, read the details for what I need
to look up and then immediately save the file again with C-x C-s which
re-encrypts the entry immediately. This pretty much guarantees that my
autosave files never have decrypted data stored in them.

I disable the default org crypt auto-save setting as follows:

(s e tq org−crypt−disable−auto−save n i l)

15.19 Speed Commands

There’s a new and exciting feature called org-speed-commands in the org-
mode.

Speed commands allow access to frequently used commands when on
the beginning of a headline - similar to one-key agenda commands. Speed
commands are user configurable and org-mode provides a good set of default
commands.

99

I have the following speed commands set up in addition to the defaults. I
don’t use priorities so I override the default settings for the 1, 2, and 3 keys.
I also disable cycling with ‘c’ and add ‘q’ as a quick way to get back to the
agenda.

(s e tq org−use−speed−commands t)
(s e tq org−speed−commands−user (quote (("1" . delete−other−windows)

("2" . sp l i t−window−vert i ca l ly)
("3" . sp l i t−window−hor izonta l ly)
("h" . hide−other)
("k" . org−kill−note−or−show−branches)
("q" . bh/show−org−agenda)
(" r " . org−revea l)
(" s " . org−save−al l−org−buffers)
("z" . org−add−note)
("c" . self− insert−command)
("C" . self− insert−command)
("J" . org−clock−goto))))

(defun bh/show−org−agenda ()
(i n t e r a c t i v e)
(switch−to−buffer "∗Org␣Agenda∗")
(delete−other−windows))

The variable org-speed-commands-default sets a lot of useful defaults
for speed command keys. The default keys I use the most are I and O for
clocking in and out and t to change todo state.

J jumps to the current or last clocking task.
c and C are disabled so they self insert. I use TAB and S-TAB for cycling -

I don’t need c and C as well. TAB works everywhere while c and C only works
on the headline and sometimes I accidentally cycle when I don’t intend to.

15.20 Org Protocol

Org protocol is a great way to create capture notes in org-mode from other
applications. I use this to create tasks to review interesting web pages I visit
in Firefox.

I have a special capture template set up for org-protocol to use (set up
with the w key).

My org-mode setup for org-protocol is really simple. It enables org-
protocol and creates a single org-protocol capture template as described in

100

http://orgmode.org/worg/org-contrib/org-protocol.php

Capture Templates.

(require ’ org−protocol)

The bulk of the setup is in the Firefox application so that C-M-r on a page
in Firefox will trigger the org-protocol capture template with details of the
page I’m currently viewing in firefox.

I set up org-protocol in firefox as described in Keybindings for Firefox.

15.21 Require a final newline when saving files

The following setting was mainly for editing yasnippets where I want to be
able to expand a snippet but stay on the same line. I used this mainly for
replacing short strings or initials with full names for people during meeting
notes. I now use abbrev-mode- for this and no longer need this setting.

(s e tq requ i r e− f i na l−newl ine n i l)

When I save a file in Emacs I want a final newline - this fits better with
the source code projects I work on. This is the setting I use now:

(s e tq requ i r e− f i na l−newl ine t)

15.22 Insert inactive timestamps and exclude from export

I insert inactive timestamps when working on org-mode files.
For remember tasks the timestamp is in the remember template but for

regular structure editing I want the timestamp automatically added when I
create the headline.

I have a function that is run by an org-mode hook to automatically insert
the inactive timestamp whenever a headline is created.

(defun bh/ insert− inact ive−t imestamp ()
(i n t e r a c t i v e)
(org−insert−time−stamp n i l t t n i l n i l n i l))

(defun bh/ insert−heading− inactive−t imestamp ()
(save−excurs ion

(org−return)
(org−cycle)
(bh/ insert− inact ive−t imestamp)))

(add−hook ’ org− insert−heading−hook ’bh/ insert−heading− inactive−t imestamp ’append)

101

http://orgmode.org/worg/org-contrib/org-protocol.php#sec-9

Everytime I create a heading with M-RET or M-S-RET the hook invokes
the function and it inserts an inactive timestamp like this

** <point here>
[2009-11-22 Sun 18:45]

This keeps an automatic record of when tasks are created which I find
very useful.

I also have a short cut key defined to invoke this function on demand so
that I can insert the inactive timestamp anywhere on demand.

(global−set−key (kbd "<f9>␣ t ") ’ bh/ insert− inact ive−t imestamp)

To prevent the timestamps from being exported in documents I use the
following setting

(s e tq org−export−with−timestamps n i l)

15.23 Return follows links

The following setting make RET insert a new line instead of opening links.
This setting is a love-hate relationship for me. When it first came out I
immediately turned it off because I wanted to insert new lines in front of
my links and RET would open the link instead which at the time I found
extremely annoying. I’ve used it for a while with it set but ultimately turned
it off again.

(s e tq org−return− fo l lows− l ink n i l)

15.24 Highlight clock when running overtime

The current clocking task is displayed on the modeline. If this has an esti-
mated time and we run over the limit I make this stand out on the modeline
by changing the background to red as follows

(custom−set− faces
; ; custom−set− faces was added by Custom .
; ; I f you e d i t i t by hand , you cou ld mess i t up , so be c a r e f u l .
; ; Your i n i t f i l e shou ld conta in on ly one such in s tance .
; ; I f t h e r e i s more than one , they won ’ t work r i g h t .
’ (org−mode−line−clock ((t (: background " grey75 " : foreground " red " : box (: l ine−width −1 : s t y l e re leased−button)))) t))

102

15.25 Meeting Notes

I take meeting notes with org-mode. I record meeting conversations in point-
form using org-mode lists. If action items are decided on in the meeting I’ll
denote them with a bullet and a TODO: or DONE: flag.

A meeting is a task and it is complete when the meeting is over. The
body of the task records all of the interesting meeting details. If TODO
items are created in the meeting I make separate TODO tasks from those.

I use the function bh/prepare-meeting-notes to prepare the meeting
notes for emailing to the participants (in a fixed-width font like “Courier
New”). As soon as the meeting is over the notes are basically ready for
distribution – there’s not need to waste lots of time rewriting the minutes
before they go out. I haven’t bothered with fancy HTML output – the
content is more important than the style.

** TODO Sample Meeting
- Attendees

- [] Joe
- [X] Larry
- [X] Mary
- [X] Fred

- Joe is on vacation this week
- Status Updates

+ Larry
- did this
- and that
- TODO: Needs to follow up on this

+ Mary
- got a promotion for her recent efforts

+ Fred
- completed all his tasks 2 days early
- needs more work
- DONE: everything

** TODO Sample Meeting
- Attendees

- [] Joe
- [X] Larry
- [X] Mary
- [X] Fred

- Joe is on vacation this week

103

- Status Updates
+ Larry

- did this
- and that

>>>>>>>> TODO: Needs to follow up on this
+ Mary

- got a promotion for her recent efforts
+ Fred

- completed all his tasks 2 days early
- needs more work

>>>>>>>> DONE: everything

Here is the formatting function. Just highlight the region for the notes
and it turns tabs into spaces, and highlights todo items. The resulting notes
are in the kill buffer ready to paste to another application.

(defun bh/prepare−meeting−notes ()
"Prepare ␣meeting␣ notes ␣ f o r ␣ emai l

␣␣␣Take␣ s e l e c t e d ␣ r eg i on ␣and␣ convert ␣ tabs ␣ to ␣ spaces , ␣mark␣TODOs␣with␣ l ead ing ␣>>>,␣and␣copy␣ to ␣ k i l l ␣ r i ng ␣ f o r ␣ pas t ing "
(i n t e r a c t i v e)
(l et (p r e f i x)

(save−excurs ion
(s av e− r e s t r i c t i o n

(narrow−to−region (reg ion−beginning) (region−end))
(untab i fy (point−min) (point−max))
(goto−char (point−min))
(whi l e (re−search− forward "^\\(␣∗−\\\)␣ \\(TODO\\ |DONE\\) : ␣" (point−max) t)

(replace−match (concat (make−string (length (match−string 1)) ?>) "␣" (match−string 2) " : ␣")))
(goto−char (point−min))
(k i l l− r ing− save (point−min) (point−max))))))

15.26 Highlights persist after changes

I’m finding I use org-occur C-c / / a lot when trying to find details in my
org-files. The following setting keeps the highlighted results of the search
even after modifying the text. This allows me to edit the file without having
to reissue the org-occur command to find the other matches in my file.

(s e tq org−remove−highlights−with−change n i l)

104

15.27 Getting up to date org-mode info documentation

I use the org-mode info documentation from the git repository so I set up
emacs to find the info files from git before the regular (out of date) system
versions.

(add−to− l ist ’ I n f o−de f au l t−d i r e c t o ry− l i s t "~/ g i t /org−mode/doc")

15.28 Prefer future dates or not?

By default org-mode prefers dates in the future. This means that if today’s
date is May 2 and you enter a date for April 30th (2 days ago) org-mode will
jump to April 30th of next year. I used to find this annoying when I wanted
to look at what happened last Friday since I have to specify the year. Now
I’ve trained my fingers to go back relatively in the agenda with b so this isn’t
really an issue for me anymore.

To make org-mode prefer the current year when entering dates I set the
following variable:

(s e tq org−read−date−prefer− future n i l)

I now have this variable set to t.

15.29 Automatically change list bullets

I take point-form notes during meetings. Having the same list bullet for
every list level makes it hard to read the details when lists are indented
more than 3 levels.

Org-mode has a way to automatically change the list bullets when you
change list levels.

Current List Bullet Next indented list bullet
+ -

-
1. -
1) -

(s e tq org− l ist−demote−modify−bullet (quote (("+" . "−")
("∗" . "−")
(" 1 . " . "−")
(" 1) " . "−"))))

105

15.30 Remove indentation on agenda tags view

I don’t like the indented view for sublevels on a tags match in the agenda
but I want to see all matching tasks (including sublevels) when I do a agenda
tag search (F12 m).

To make all of the matched headings for a tag show at the same level in
the agenda set the following variable:

(s e tq org−tags−match− l i st−sublevels t)

15.31 Fontify source blocks natively

I use babel for including source blocks in my documents with

#+begin_src LANG
...

#+end_src

where LANG specifies the language to use (ditaa, dot, sh, emacs-lisp, etc)
This displays the language contents fontified in both the org-mode source
buffer and the exported document.

See this Git Repository synchronization in this document for an example..

15.32 Agenda persistent filters

This is a great feature! Persistent agenda filters means if you limit a search
with / TAB SomeTag the agenda remembers this filter until you change it.

Enable persistent filters with the following variable

(s e tq org−agenda−per s i s t ent− f i l t e r t)

The current filter is displayed in the modeline as {+SomeTag} so you can
easily see what filter currently applies to your agenda view.

I use this with FILETAGS to limit the displayed results to a single client
or context.

15.33 Add tags for flagged entries

Everyone so often something will come along that is really important and
you know you want to be able to find it back fast sometime in the future.

For these types of notes and tasks I add a special :FLAGGED: tag. This
tag gets a special fast-key ? which matches the search key in the agenda

106

for flagged items. See Tags for the setup of org-tag-alist for the FLAGGED
entry.

Finding flagged entries is then simple - just F12 ? and you get them all.

15.34 Prevent horizontal window splitting

Emacs 23 wants to split the window both horizontally and vertically based
on screen usage. With today’s widescreen monitors this often means we split
the window horizontally instead of vertically.

I found this change obtrusive and turn it off with the following setting.

(s e tq sp l i t−width− thresho ld 9999)

15.35 Mail links open compose-mail

The following setting makes org-mode open mailto: links using compose-
mail.

(s e tq org−link−mailto−program (quote (compose−mail "%a" "%s")))

15.36 Composing mail from org mode subtrees

It’s possible to create mail from an org-mode subtree. I use C-c M-o to start
an email message with the details filled in from the current subtree. I use
this for repeating reminder tasks where I need to send an email to someone
else. The email contents are already contained in the org-mode subtree and
all I need to do is C-c M-o and any minor edits before sending it off.

15.37 Use smex for M-x ido-completion

I discovered smex for IDO-completion for M-x commands after reading a
post of the org-mode mailing list. I actually use M-x a lot now because IDO
completion is so easy.

Here’s the smex setup I use

(add−to− l ist ’ load−path (expand−file−name "~/. emacs . d"))
(require ’ smex)
(smex− i n i t i a l i z e)

(global−set−key (kbd "M−x") ’ smex)
(global−set−key (kbd "M−X") ’ smex−major−mode−commands)

107

15.38 Use Emacs bookmarks for fast navigation

I’ve started using emacs bookmarks to save a location and return to it easily.
Normally I want to get back to my currently clocking task and that’s easy
- just hit F11. When I’m working down a long checklist I find it convenient
to set a bookmark on the next item to check, then go away and work on it,
and return to the checkbox to mark it done.

I use Emacs bookmarks for this setup as follows:

; ; Bookmark hand l ing
; ;
(global−set−key (kbd "<C−f6>") ’ (lambda () (i n t e r a c t i v e) (bookmark−set "SAVED")))
(global−set−key (kbd "<f6>") ’ (lambda () (i n t e r a c t i v e) (bookmark−jump "SAVED")))

When I want to save the current location I just hit C-f6 and then I can
return to it with f6 anytime. I overwrite the same bookmark each time I set
a new position.

15.39 Using org-mime to email

I’m experimenting with sending mime mail from org. I’ve added C-c M=o key
bindings in the org-mode-hook to generate mail from an org-mode subtree.

(require ’ org−mime)

15.40 Remove multiple state change log details from the
agenda

I skip multiple timestamps for the same entry in the agenda view with the
following setting.

(s e tq org−agenda−skip−additional−timestamps−same−entry t)

This removes the clutter of extra state change log details when multiple
timestamps exist in a single entry.

15.41 Drop old style references in tables

I drop the old A3/B4 style references from tables when editing with the
following setting.

(s e tq org−table−use−standard−references (quote from))

108

15.42 Use system settings for file-application selection

To get consistent applications for opening tasks I set the org-file-apps
variable as follows:

(s e tq org− f i l e−apps (quote ((auto−mode . emacs)
(" \\ .mm\\ ’ " . system)
(" \\ . x?html ?\\ ’ " . system)
(" \\ . pdf \\ ’ " . system))))

This uses the entries defined in my system mailcap settings when opening
file extensions. This gives me consistent behaviour when opening an link to
some HTML file with C-c C-o or when previewing an export.

15.43 Use the current window for the agenda

; Overwri te the curren t window with the agenda
(s e tq org−agenda−window−setup ’ current−window)

15.44 Delete IDs when cloning

(s e tq org−clone−delete− id t)

15.45 Propagate STARTED to parent tasks

When a task is marked STARTED (either manually or by clocking it in) the
STARTED state propagates up the tree to any parent tasks of this task that
are TODO or NEXT. As soon as I work on the first NEXT task in a tree the
project is also marked STARTED. This helps me keep track of things that are
in progress.

Here’s the setup I use to propagate STARTED to parent tasks:

; ; Mark parent t a s k s as s t a r t e d
(defvar bh/mark−parent−tasks−started n i l)

(defun bh/mark−parent−tasks−started ()
" V i s i t ␣ each␣ parent ␣ task ␣and␣change␣TODO␣ s t a t e s ␣ to ␣STARTED"
(unless bh/mark−parent−tasks−started

(when (equal s t a t e "STARTED")
(l et ((bh/mark−parent−tasks−started t))

(save−excurs ion
(whi l e (org−up−heading−safe)

(when (member (nth 2 (org−heading−components)) (l i s t "TODO" "NEXT"))

109

(org−todo "STARTED"))))))))

(add−hook ’ org−after−todo−state−change−hook ’bh/mark−parent−tasks−started ’append)

16 Things I Don’t Use

This is a partial list of things I know about but do not use. org-mode is
huge with tons of features. There are features out there that I don’t know
about yet or haven’t explored so this list is not going to be complete.

16.1 Task Priorities

I use the agenda to figure out what to do work on next. I don’t use priorities
at all. I’ve played with them in the past and always go back to using no
priorities.

I disable the priority setting keys in org-mode using

(se tq org−enable−priority−commands n i l)

16.2 Archive Sibling

This was a cute idea but I find archiving entire complete subtrees better. I
don’t mind having a bunch of tasks marked DONE (but not archived)

16.3 Cycling plain lists

Org mode can fold (cycle) plain lists. I don’t use this feature.

(s e tq org−cyc l e− inc lude−pla in− l i s t s n i l)

Turning this on makes my F5 sparse trees way too big. I just want to see
the headlines.

16.4 Strike-through emphasis

Strike-through emphasis is just unreadable and tends to only show up when
pasting data from other files into org-mode. This just removes the strike-
through completely which I find a lot nicer.

(s e tq org−emphasis−al ist (quote (("∗" bold "" "")
("/" i t a l i c "<i>" "</i>")
("_" unde r l i n e "<span␣ s t y l e=\"text−decorat ion : unde r l i n e ;\">" "")

110

("=" org−code "<code>" "</code>" verbatim)
("~" org−verbatim "<code>" "</code>" verbatim))))

16.5 Subscripts and Superscripts

I don’t currently write documents that need subscripts and superscript sup-
port. I disable handling of _ and ^ for subscript and superscripts with

(se tq org−use−sub−superscr ipts n i l)

17 Using Git for Automatic History, Backups, and
Synchronization

Editing folded regions of your org-mode file can be hazardous to your data.
My method for dealing with this is to put my org files in a Git source
repository.

My setup saves all of my org-files every hour and creates a commit with
my changes automatically. This lets me go back in time and view the state
of my org files for any given hour over the lifetime of the document. I’ve
used this once or twice to recover data I accidentally removed while editing
folded regions.

17.1 Automatic Hourly Commits

My Emacs setup saves all org buffers at 1 minute before the hour using the
following code in my .emacs

(run−at−time " 00 :59 " 3600 ’ org−save−al l−org−buffers)

A cron job runs at the top of the hour to commit any changes just saved
by the call to org-save-all-org-buffers above. I use a script to create
the commits so that I can run it on demand to easily commit all modified
work when moving from one machine to another.

crontab details:

0 * * * * ~/bin/org-git-sync.sh >/dev/null

17.1.1 ˜/bin/org-git-sync.sh

Here is the shell script I use to create a git commit for each of my org-
repositories. This loops through multiple repositories and commits any mod-
ified files. I have the following org-mode repositories:

111

• org

for all of my organization project files and todo lists

• doc-norang.ca

for any changes to documents under http://doc.norang.ca/

• www.norang.ca

for any changes to my other website http://www.norang.ca/

This script does not create empty commits - git only creates a commit
if something was modified.

#!/ bin / sh
Add org f i l e changes to the r e p o s i t o r y
REPOS="org ␣doc . norang . ca␣www. norang . ca"

for REPO in $REPOS
do

echo "Repos i tory : ␣$REPO"
cd ~/ g i t /$REPO
Remove d e l e t e d f i l e s
g i t l s− f i l e s −−de l e t ed −z | xargs −0 g i t rm >/dev/ nu l l 2>&1
Add new f i l e s
g i t add . >/dev/ nu l l 2>&1
g i t commit −m "$ (date) "

done

I use the following .gitignore file in my org-mode git repositories to
keep export generated files out of my git repositories. If I include a graphic
from some other source than ditaa or graphviz then I’ll add it to the reposi-
tory manually. By default all PNG graphic files are ignored (since I assume
they are produced by ditaa during export)

core
core.*
*.html
*~
.#*
\#*\#
*.txt
*.tex

112

http://doc.norang.ca/
http://www.norang.ca/

*.aux
*.dvi
*.log
*.out
*.ics
*.pdf
*.xml
*.org-source
*.png
*.toc

17.2 Git - Edit files with confidence

I use git in all of my directories where editing a file should be tracked.
This means I can edit files with confidence. I’m free to change stuff and

break things because it won’t matter. It’s easy to go back to a previous
working version or to see exactly what changed since the last commit. This
is great when editing configuration files (such as apache webserver, bind9
DNS configurations, etc.)

I find this extremely useful where your edits might break things and
having git tracking the changes means if you break it you can just go back
to the previous working version easily. This is also true for package upgrades
for software where the upgrade modifies the configuration files.

I have every version of my edits in a local git repository.

17.3 Git Repository synchronization

I acquired a Eee PC 1000 HE which now serves as my main road-warrior
laptop replacing my 6 year old Toshiba Tecra S1.

I have a server on my LAN that hosts bare git repositories for all of my
projects. The problem I was facing is I have to leave in 5 minutes and want
to make sure I have up-to-date copies of everything I work on when I take
it on the road (without Internet access).

To solve this I use a server with bare git repositories on it. This includes
my org-mode repositories as well as any other git repositories I’m interested
in.

Just before I leave I run the git-sync script on my workstation to update
the bare git repositories and then I run it again on my Eee PC to update all
my local repositories on the laptop. For any repositories that give errors due
to non-fast-forward merges I manually merge as required and rerun git-sync

113

until it reports no errors. This normally takes a minute to two to do. Then
I grab my Eee PC and leave. When I’m on the road I have full up-to-date
history of all my git repositories.

The git-sync script replaces my previous scripts with an all-in-one tool
that basically does this:

• for each repository on the current system

– fetch objects from the remote

– for each branch that tracks a remote branch

∗ Check if the ref can be moved
· fast-forwards if behind the remote repository and is fast-
forwardable

· Does nothing if ref is up to date
· Pushes ref to remote repository if ref is ahead of remote
repository and fast-forwardable

· Fails if ref and remote have diverged

This automatically advances changes on my 35+ git repositories with
minimal manual intervention. The only time I need to manually do some-
thing in a repository is when I make changes on my Eee PC and my work-
station at the same time - so that a merge is required.

Here is the git-sync script

#!/ bin / sh
#

Local bare r e p o s i t o r y name
syncrepo=norang
reporoot=~/g i t

Disp lay r e p o s i t o r y name only once
log_repo () {

[" x$ l a s t r epo " == "x$repo"] | | {
p r i n t f "\nREPO: ␣${ repo }\n"
l a s t r e p o="$repo "

}
}

Log a message f o r a r e p o s i t o r y

114

log_msg () {
log_repo
p r i n t f "␣␣$1\n"

}

fas t−forward r e f e r ence $1 to $syncrepo /$1
fast_forward_ref () {

log_msg " fa s t−forward ing ␣ r e f ␣$1"
cur rent_re f=$ (cat . g i t /HEAD)
i f [" x$current_re f " = " x r e f : ␣ r e f s /heads/$1"]
then

Check f o r d i r t y index
f i l e s=$ (g i t d i f f−index −−name−only HEAD −−)
g i t merge r e f s / remotes / $syncrepo /$1

else
g i t branch −f $1 r e f s / remotes / $syncrepo /$1

f i
}

Push r e f e r ence $1 to $syncrepo
push_ref () {

log_msg "Pushing␣ r e f ␣$1"
i f ! g i t push −−tags $syncrepo $1
then

exit 1
f i

}

Check i f a r e f can be moved
− f a s t−forwards i f behind the sync repo and i s f a s t−f o rwardab l e
− Does noth ing i f r e f i s up to date
− Pushes r e f to $syncrepo i f r e f i s ahead o f syncrepo and f a s t f o rwa r d a b l e
− Fa i l s i f r e f and $syncrop/ r e f have d i v e r ged
check_ref () {

r e v l i s t 1=$ (g i t rev− l i s t r e f s / remotes / $syncrepo /$1 . . $1)
r e v l i s t 2=$ (g i t rev− l i s t $1 . . r e f s / remotes / $syncrepo /$1)
i f [" x $ r e v l i s t 1 " = "x" −a " x $ r e v l i s t 2 " = "x"]
then

Ref $1 i s up to date .
:

115

e l i f [" x $ r e v l i s t 1 " = "x"]
then

Ref $1 i s behind $syncrepo /$1 and can be f a s t−forwarded .
fast_forward_ref $1 | | exit 1

e l i f [" x $ r e v l i s t 2 " = "x"]
then

Ref $1 i s ahead o f $syncrepo /$1 and can be pushed .
push_ref $1 | | exit 1

else
log_msg "Ref␣$1␣and␣ $syncrepo /$1␣have␣ d iverged . "
exit 1

f i
}

Check a l l l o c a l r e f s wi th matching r e f s in the $syncrepo
check_refs () {

g i t for−each−r e f r e f s /heads /∗ | while read sha1 commit r e f
do

r e f=${ r e f / r e f s \/ heads \//}
g i t for−each−r e f r e f s / remotes / $syncrepo / $ r e f | while read sha2 commit r e f 2
do

i f [" x$sha2" != "x" −a "x$sha2" != "x"]
then

check_ref $ r e f | | exit 1
f i

done
done

}

For a l l r e p o s i t o r i e s under $reporoot
Check a l l r e f s matching $syncrepo and f a s t−forward , or push as necessary
to synchron i ze the r e f wi th $syncrepo
Bai l out i f r e f i s not f a s t f o rwa r d a b l e so user can f i x and rerun
time {

r e t v a l=0
i f f i nd $reporoot −type d −name ’ ∗ . g i t ’ | {

while read repo
do

repo=${ repo /\/ . g i t /}
cd ${ repo }

116

upd=$ (g i t remote update $syncrepo 2>&1 | | r e t v a l =1)
["x$upd" = "xFetching ␣ $syncrepo "] | | {

log_repo
p r i n t f "$upd\n"

}
check_refs | | r e t v a l=1

done
exit $ r e t va l

}
then

p r i n t f "\ nAll ␣done . \ n"
else

p r i n t f "\nFix␣and␣ redo . \ n"
f i

}

exit $ r e t va l

18 Change History - What’s new

This is version

v1.0.0-117-g03ea

of this document is created using the publishing features of org-mode.
The source for this document can be found as colorized HTML and plain

text org file.
I try to update this document about once a month.
The change history for this document can be found at git://git.norang.ca/org-

mode-doc.git.

117

http://doc.norang.ca/org-mode.org.html
http://doc.norang.ca/org-mode.org
http://doc.norang.ca/org-mode.org
http://git.norang.ca/?p%3Dorg-mode-doc.git%3Ba%3Dsummary
http://git.norang.ca/?p%3Dorg-mode-doc.git%3Ba%3Dsummary

	Getting Started
	Org-Mode Setup
	Organizing Your Life Into Org Files
	Agenda Setup
	Org File Structure
	Key bindings

	Tasks and States
	TODO keywords
	Fast Todo Selection
	TODO state triggers

	Adding New Tasks Quickly with Org Capture
	Capture Templates
	Separate file for Capture Tasks
	Capture Tasks is all about being FAST

	Refiling Tasks
	Refile Setup
	Refiling Tasks
	Refiling Notes
	Refiling Phone Calls

	Custom agenda views
	Setup
	What do I work on next?
	Reading email, newsgroups, and conversations on IRC
	Filtering

	Time Clocking
	Clock Setup
	Clocking in
	Clock Everything - Create New Tasks
	Finding tasks to clock in
	Editing clock entries
	Automatically clocking tasks

	Time reporting and tracking
	Billing clients based on clocked time
	Task Estimates and column view

	Tags
	Tags
	Filetags
	Trigger Tags

	Handling Notes
	Handling Phone Calls
	GTD stuff
	Weekly Review Process
	Project definition and finding stuck projects

	Archiving
	Archiving Subtrees
	Archive Setup
	Archive Tag - Hiding Information
	When to Archive

	Publishing and Exporting
	Org-babel Setup
	Playing with ditaa
	Playing with graphviz
	Playing with PlantUML
	Publishing Projects
	Miscellaneous Export Settings

	Reminders
	Reminder Setup

	Productivity Tools
	Yasnippet
	Abbrev-mode and Skeletons
	Limit your view to what you are working on
	Tuning the Agenda Views
	Checklist handling
	Backups
	Handling blocked tasks
	Org Task structure and presentation
	Attachments
	Deadlines and Agenda Visibility
	Exporting Tables to CSV
	Visiting links
	Logging stuff
	Limiting time spent on tasks
	Habit Tracking
	Habits only log DONE state changes
	Auto revert mode
	Handling Encryption
	Speed Commands
	Org Protocol
	Require a final newline when saving files
	Insert inactive timestamps and exclude from export
	Return follows links
	Highlight clock when running overtime
	Meeting Notes
	Highlights persist after changes
	Getting up to date org-mode info documentation
	Prefer future dates or not?
	Automatically change list bullets
	Remove indentation on agenda tags view
	Fontify source blocks natively
	Agenda persistent filters
	Add tags for flagged entries
	Prevent horizontal window splitting
	Mail links open compose-mail
	Composing mail from org mode subtrees
	Use smex for M-x ido-completion
	Use Emacs bookmarks for fast navigation
	Using org-mime to email
	Remove multiple state change log details from the agenda
	Drop old style references in tables
	Use system settings for file-application selection
	Use the current window for the agenda
	Delete IDs when cloning
	Propagate STARTED to parent tasks

	Things I Don't Use
	Task Priorities
	Archive Sibling
	Cycling plain lists
	Strike-through emphasis
	Subscripts and Superscripts

	Using Git for Automatic History, Backups, and Synchronization
	Automatic Hourly Commits
	Git - Edit files with confidence
	Git Repository synchronization

	Change History - What's new

